Lipid peroxidation assessed by serum thiobarbituric acid reactive substances in healthy subjects and in patients with pathologies known to affect trace element status

[1]  W. Wąsowicz,et al.  Optimized steps in fluorometric determination of thiobarbituric acid-reactive substances in serum: importance of extraction pH and influence of sample preservation and storage. , 1993, Clinical chemistry.

[2]  C. Cross,et al.  Free radicals, antioxidants, and human disease: where are we now? , 1992, The Journal of laboratory and clinical medicine.

[3]  R. Kew,et al.  Ceruloplasmin and transferrin levels are altered in serum and bronchoalveolar lavage fluid of patients with the adult respiratory distress syndrome. , 1992, The American review of respiratory disease.

[4]  H. Schultz,et al.  Involvement of free radicals in the pathophysiology of chronic pancreatitis: Potential of treatment with antioxidant and scavenger substances , 1991, Klinische Wochenschrift.

[5]  E. Greene,et al.  Oxygen free radicals in acute renal failure. , 1991, Mineral and electrolyte metabolism.

[6]  A. Coutellier,et al.  [Free radicals and lipid peroxidation in cell biology: physiopathologic prospects]. , 1991, Pathologie-biologie.

[7]  J. Néve,et al.  Physiological and nutritional importance of selenium , 1991, Experientia.

[8]  S. Aust,et al.  Inhibition of superoxide and ferritin-dependent lipid peroxidation by ceruloplasmin. , 1989, The Journal of biological chemistry.

[9]  S. Sarna,et al.  Anti-oxidant supplementation decreases TBA reactants in serum of elderly , 1988, Biological Trace Element Research.

[10]  J. Stocks,et al.  The relationship between erythrocyte superoxide dismutase activity and erythrocyte copper levels in normal subjects and in patients with rheumatoid arthritis. , 1976, Clinica chimica acta; international journal of clinical chemistry.

[11]  F. Sunderman,et al.  Measurement of human serum ceruloplasmin by its p-phenylenediamine oxidase activity. , 1970, Clinical chemistry.

[12]  J. Dawson,et al.  Direct determination of zinc in whole blood, plasma and urine by atomic absorption spectroscopy. , 1969, Clinica chimica acta; international journal of clinical chemistry.

[13]  A. Clauss,et al.  Gerinnungsphysiologische Schnellmethode zur Bestimmung des Fibrinogens , 1957 .

[14]  M. Richard Pouvoir antioxydant du sélénium et du zinc : intérêt d'une supplémentation chez l'insuffisant rénal chronique hémodialysé , 1992 .

[15]  M. Büchler,et al.  The role of oxygen radicals in experimental acute pancreatitis. , 1992, Free radical biology & medicine.

[16]  J. Arnaud,et al.  Trace elements and lipid peroxidation abnormalities in patients with chronic renal failure. , 1991, Nephron.

[17]  C. Keen,et al.  Essential Trace Elements in Antioxidant Processes , 1991 .

[18]  D. Janero,et al.  Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. , 1990, Free radical biology & medicine.

[19]  P. Schramel,et al.  Trace element analytical chemistry in medicine and biology , 1980 .

[20]  C. Zukoski,et al.  Inhibition of some functions of polymorphonuclear leukocytes by in vitro zinc. , 1977, The Journal of laboratory and clinical medicine.