Bifurcations and EXIT charts for the Binary Erasure Channel

In this paper we present an abstraction of the extrinsic information transfer (EXIT) chart as the interconnection of two nonlinear systems in feedback with each other. We present results on the stability of fixed points for such a dynamical system and use this framework to rederive the well-known stability condition, connecting this to the one-dimensional dynamical system describing the fractions of erasure for low-density parity-check (LDPC) codes on the binary erasure channel (BEC). We observe that the error threshold corresponds to a fixed point bifurcation for this one-dimensional system, and show that this information can be visualized using a well-known tool from control theory: the root locus plot. We further show that these bifurcations can be seen by examining the EXIT chart

[1]  Thomas J. Richardson,et al.  The geometry of turbo-decoding dynamics , 2000, IEEE Trans. Inf. Theory.

[2]  Alexander Vardy,et al.  The turbo decoding algorithm and its phase trajectories , 2001, IEEE Trans. Inf. Theory.

[3]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .

[4]  Andrea Montanari,et al.  Life Above Threshold: From List Decoding to Area Theorem and MSE , 2004, ArXiv.

[5]  Gene F. Franklin,et al.  Feedback Control of Dynamic Systems , 1986 .

[6]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[7]  C. Kellett,et al.  Fixed Points of Exit Charts , 2006, 2006 Australian Communications Theory Workshop.

[8]  Daniel A. Spielman,et al.  Practical loss-resilient codes , 1997, STOC '97.

[9]  William T. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.

[10]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[11]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[12]  S. Brink Convergence of iterative decoding , 1999 .

[13]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[14]  A. Vardy,et al.  The turbo decoding algorithm and its phase trajectories , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[15]  Stephan ten Brink,et al.  Extrinsic information transfer functions: model and erasure channel properties , 2004, IEEE Transactions on Information Theory.

[16]  Shlomo Shamai,et al.  Extremes of information combining , 2005, IEEE Transactions on Information Theory.

[17]  Minyue Fu,et al.  Stochastic analysis of turbo decoding , 2005, IEEE Transactions on Information Theory.

[18]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.