Smooth B-spline illumination maps for bidirectional ray tracing

In this paper we introduce B-spline illumination maps and their generalizations and extensions for use in realistic image generation algorithms. The B-spline lighting functions (i.e., illumination maps) are defined as weighted probability density functions. The lighting functions can be estimated from random data and may be used in bidirectional distributed ray tracing programs as well as radiosity oriented algorithms. The use of these lighting functions in a bidirectional ray tracing system that can handle dispersion as well as the focusing of light through lenses is presented.

[1]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[2]  J. Arvo,et al.  Unbiased Variance Reduction for Global Illumination , 1994 .

[3]  Donald S. Fussell,et al.  Adaptive mesh generation for global diffuse illumination , 1990, SIGGRAPH.

[4]  Donald P. Greenberg,et al.  A two-pass solution to the rendering equation: A synthesis of ray tracing and radiosity methods , 1987, SIGGRAPH.

[5]  P. Hoel,et al.  Introduction to Mathematical Statistics. Second Edition. , 1955 .

[6]  Samuel P. Uselton,et al.  Statistically optimized sampling for distributed ray tracing , 1985, SIGGRAPH.

[7]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[8]  Claude Puech,et al.  A general two-pass method integrating specular and diffuse reflection , 1989, SIGGRAPH '89.

[9]  Donald P. Greenberg,et al.  Modeling the interaction of light between diffuse surfaces , 1984, SIGGRAPH.

[10]  R. Redner,et al.  Function estimation using partitions of unity , 1994 .

[11]  Stephen N. Spencer The Hemisphere Radiosity Method: A Tale of Two Algorithms , 1992 .

[12]  Paul S. Heckbert Adaptive radiosity textures for bidirectional ray tracing , 1990, SIGGRAPH.

[13]  David G. Kendall,et al.  Spline Transformations: Three New Diagnostic Aids for the Statistical Data‐Analyst , 1971 .

[14]  Robert L. Cook,et al.  A Reflectance Model for Computer Graphics , 1987, TOGS.

[15]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[16]  Robert L. Cook,et al.  Distributed ray tracing , 1984, SIGGRAPH.

[17]  Donald P. Greenberg,et al.  A radiosity method for non-diffuse environments , 1986, SIGGRAPH.

[18]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .

[19]  Richard A. Redner,et al.  Nonparametric probability density estimation using normalized b–splines , 1992 .

[20]  R. Tapia,et al.  Nonparametric Function Estimation, Modeling, and Simulation , 1987 .

[21]  S. Schwartz Estimation of Probability Density by an Orthogonal Series , 1967 .

[22]  F. Kenton Musgrave Prisms and rainbows: a dispersion model for computer graphics , 1989 .

[23]  B. Barsky,et al.  An Introduction to Splines for Use in Computer Graphics and Geometric Modeling , 1987 .

[24]  David W. Scott,et al.  Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.

[25]  Donald P. Greenberg,et al.  The hemi-cube: a radiosity solution for complex environments , 1985, SIGGRAPH.

[26]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[27]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[28]  E. Sparrow,et al.  Radiation Heat Transfer , 1978 .

[29]  F. Billmeyer Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed., by Gunter Wyszecki and W. S. Stiles, John Wiley and Sons, New York, 1982, 950 pp. Price: $75.00 , 1983 .

[30]  Holly E. Rushmeier,et al.  A progressive multi-pass method for global illumination , 1991, SIGGRAPH.

[31]  James F. Blinn,et al.  Models of light reflection for computer synthesized pictures , 1977, SIGGRAPH.

[32]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .