> Replace This Line with Your Paper Identification Number (double-click Here to Edit) < 1 a Biomimetic, 4.5µw, 120+db, Log-domain Cochlea Channel with Agc

This paper deals with the design and performance evaluation of a new analogue CMOS cochlea channel of increased biorealism. The design implements a recently proposed transfer function, namely the One-Zero Gammatone Filter (or OZGF), which provides a robust foundation for modeling a variety of auditory data such as realistic passband asymmetry, linear low-frequency tail and level-dependent gain. Moreover, the OZGF is attractive because it can be implemented efficiently in any technological medium – analogue or digital – using standard building blocks. The channel was synthesized using novel, low-power, Class-AB, log-domain, biquadratic filters employing MOS transistors operating in their weak inversion regime. Furthermore, the paper details the design of a new low-power automatic gain control circuit that adapts the gain of the channel according to the input signal strength, thereby extending significantly its input dynamic range. We evaluate the performance of a 4-order OZGF channel (equivalent to an 8-order cascaded filter structure) through both detailed simulations and measurements from a fabricated chip using the commercially available 0.35μm AMS CMOS process. The whole system is tuned at 3kHz, dissipates a mere 4.46μW of static power, accommodates 124dB (at <5% THD) of input dynamic range at the center frequency and is set to provide up to 70dB of amplification for small signals.

[1]  K. Boahen,et al.  A 360-Channel Speech Preprocessor that Emulates the Cochlear Amplifier , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[2]  N. Cooper,et al.  Harmonic distortion on the basilar membrane in the basal turn of the guinea‐pig cochlea , 1998, The Journal of physiology.

[3]  André van Schaik,et al.  Design of an Analogue VLSI Model of an Active Cochlea , 1997 .

[4]  R. Patterson,et al.  Off-frequency listening and auditory-filter asymmetry. , 1980, The Journal of the Acoustical Society of America.

[5]  John Lazzaro,et al.  Silicon models of early audition , 1990 .

[6]  C. A. Mead,et al.  A CMOS VLSI cochlea , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[7]  Rahul Sarpeshkar,et al.  A Low-Power Wide-Dynamic-Range Analog VLSI Cochlea , 1998 .

[8]  D. R. Frey,et al.  A state-space formulation for externally linear class AB dynamical circuits , 1999 .

[9]  Michael W. Baker,et al.  A low-power wide dynamic range envelope detector , 2003, IEEE J. Solid State Circuits.

[10]  Yannis Tsividis,et al.  Externally linear, time-invariant systems and their application to companding signal processors , 1997 .

[11]  Yannis Tsividis,et al.  Syllabically companding log domain filter using dynamic biasing , 1997 .

[12]  L. Robles,et al.  Two-tone distortion on the basilar membrane of the chinchilla cochlea. , 1997, Journal of neurophysiology.

[13]  Yannis Tsividis Minimising power dissipation in analogue signal processors through syllabic companding , 1999 .

[14]  Ivan Grech,et al.  Low-Power Log-Domain CMOS Filter Bank for 2-D Sound Source Localization , 2003 .

[15]  Robert M. Fox Enhancing dynamic range in differential log-domain filters based on the two-filters approach , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[16]  Carver A. Mead,et al.  Neuromorphic electronic systems , 1990, Proc. IEEE.

[17]  Weimin Liu,et al.  Voiced-speech representation by an analog silicon model of the auditory periphery , 1992, IEEE Trans. Neural Networks.

[18]  Rahul Sarpeshkar,et al.  Efficient precise computation with noisy components: extrapolating from an electronic cochlea to the brain , 1997 .

[19]  Hiroshi Tanimoto,et al.  Realization of a 1-V active filter using a linearization technique employing plurality of emitter-coupled pairs , 1991 .

[20]  Toshio Irino A 'gammachirp' function as an optimal auditory filter with the Mellin transform , 1996, ICASSP.

[21]  Rahul Sarpeshkar,et al.  An analog VLSI cochlea with new transconductance amplifiers and nonlinear gain control , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.

[22]  D. Python,et al.  A micropower class AB CMOS log-domain filter for DECT applications , 2000, Proceedings of the 26th European Solid-State Circuits Conference.

[23]  C. Toumazou,et al.  "Log-domain state-space": a systematic transistor-level approach for log-domain filtering , 1999 .

[24]  T. Irino,et al.  A compressive gammachirp auditory filter for both physiological and psychophysical data. , 2001, The Journal of the Acoustical Society of America.

[25]  André van Schaik,et al.  AER EAR: A Matched Silicon Cochlea Pair With Address Event Representation Interface , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[26]  André van Schaik,et al.  Improved Silicon Cochlea using Compatible Lateral Bipolar Transistors , 1995, NIPS.

[27]  R. Lyon The all-pole gammatone filter and auditory models , 1996 .

[28]  D. R. Frey,et al.  Log-domain filtering: An approach to current-mode fil-tering , 1993 .

[29]  Emmanuel M. Drakakis,et al.  Log-domain filtering and the Bernoulli cell , 1999 .

[30]  Richard F. Lyon,et al.  Practical Gammatone-Like Filters for Auditory Processing , 2006, EURASIP J. Audio Speech Music. Process..

[31]  C. Toumazou,et al.  A 126-/spl mu/W cochlear chip for a totally implantable system , 2005, IEEE Journal of Solid-State Circuits.

[32]  K. Kimura The ultra-multi-tanh technique for bipolar linear transconductance amplifiers , 1997 .

[33]  Emmanuel M. Drakakis,et al.  Insights and Advances on the Design of CMOS Sinh Companding Filters , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[34]  N. A. Bhadkamkar Binaural source localizer chip using subthreshold analog CMOS , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[35]  Andreas G. Andreou,et al.  A design framework for low power analog filter banks , 1995 .

[36]  Malcolm Slaney,et al.  An Efficient Implementation of the Patterson-Holdsworth Auditory Filter Bank , 1997 .

[37]  T. Irino,et al.  A time-domain, level-dependent auditory filter: The gammachirp , 1997 .

[38]  Rahul Sarpeshkar,et al.  An ultra-low-power programmable analog bionic ear processor , 2005, IEEE Transactions on Biomedical Engineering.

[39]  Richard F. Lyon,et al.  Improved implementation of the silicon cochlea , 1992 .

[40]  J.P. Cornil,et al.  A micropower switched capacitor implementation of the silicon cochlea , 1994, ESSCIRC '94: Twientieth European Solid-State Circuits Conference.

[41]  Richard F. Lyon Analog Implementations of Auditory Models , 1991, HLT.

[42]  M. Ruggero,et al.  Mechanical bases of frequency tuning and neural excitation at the base of the cochlea: comparison of basilar-membrane vibrations and auditory-nerve-fiber responses in chinchilla. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Christian Enz,et al.  Low-voltage log-domain signal processing in CMOS and BiCMOS , 1997, Proceedings of 1997 IEEE International Symposium on Circuits and Systems. Circuits and Systems in the Information Age ISCAS '97.

[44]  Richard F. Lyon,et al.  A computational model of filtering, detection, and compression in the cochlea , 1982, ICASSP.

[45]  D. Frey Exponential state space filters: a generic current mode-design strategy , 1996 .

[46]  Yannis Tsividis,et al.  On linear integrators and differentiators using instantaneous companding , 1995 .

[47]  Emmanuel M. Drakakis,et al.  A Practical CMOS Companding Sinh Lossy Integrator , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[48]  Richard F. Lyon,et al.  An analog electronic cochlea , 1988, IEEE Trans. Acoust. Speech Signal Process..