FPGA implementation of low-power 3D ultrasound beamformer

3D ultrasound is common for non-invasive medical imaging in cardiology and OB-GYN because of its accuracy, safety, and real-time ease of use. However, high bandwidth requirements and extreme computational complexity have precluded hand-held and low-power 3D systems, limiting 3D applications. In previous work, we presented Sonic Millip3De, a hardware design that can efficiently handle the high computational demand of real-time 3D synthetic aperture beamforming, even in handheld and mobile applications. The design combines a custom, highly parallel hardware system with a novel delay approximation method to quickly produce high quality 3D image data within an estimated 15 W full-system power budget. Prior evaluations of the design relied on software prototypes; this work extends previous evaluations with an FPGA implementation of the beamforming accelerator, validating the results of earlier prototypes. In particular, we carry out image quality analyses of our beamforming architecture using simulated 3D echo data (from Field II) and 2D artificial tissue phantom data acquired using a Verasonics V-1 system and Philips P4-1 probe. We compare results from the FPGA implementation to an ideal software beamformer and prior software prototypes of the Sonic Millip3De design.

[1]  Ming Yang,et al.  Sonic Millip3De with dynamic receive focusing and apodization optimization , 2013, 2013 IEEE International Ultrasonics Symposium (IUS).

[2]  J. Jensen,et al.  Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers , 1992, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[3]  K. Boone,et al.  Effect of skin impedance on image quality and variability in electrical impedance tomography: a model study , 1996, Medical and Biological Engineering and Computing.

[4]  Ming Yang,et al.  Sonic Millip3De: A massively parallel 3D-stacked accelerator for 3D ultrasound , 2013, 2013 IEEE 19th International Symposium on High Performance Computer Architecture (HPCA).

[5]  S. I. Nikolov,et al.  SARUS: A synthetic aperture real-time ultrasound system , 2013, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[6]  J. Arendt Paper presented at the 10th Nordic-Baltic Conference on Biomedical Imaging: Field: A Program for Simulating Ultrasound Systems , 1996 .