Dynamic performance analysis of nonlinear anti-resonance vibrating machine with the fluctuation of material mass

Aimed to solve the problem of weak anti-resonance performance and poor working stability in current anti-resonance vibrating machines, this paper presents a nonlinear dynamic model that reflects the actual working state of the anti-resonance machine. Under the material mass fluctuation condition, the dynamic response of the anti-resonance vibrating system has been discussed, and the dynamic parameters selection problem of the anti-resonance vibrating system has been analyzed which could be used to improve working performance stability. In the paper, the influence of nonlinear factors of the anti-resonance vibrating machine on the driving body and the working body has been analyzed under the material fluctuation conditions also. The results can provide the theoretical support and experimental basis for improving the design and working performance of the anti-resonance vibrating machine.