How Far Can Chemotactic Cross-diffusion Enforce Exceeding Carrying Capacities?

We consider nonnegative solutions of the Neumann initial-boundary value problem for the chemotaxis-growth system $$\begin{aligned} \left\{ \begin{array}{l} u_t=\varepsilon u_{xx} -(uv_x)_x +ru -\mu u^2, \qquad x\in \Omega , \ t>0, \\ 0=v_{xx}-v+u, \qquad x\in \Omega , \ t>0, \end{array} \right. \quad (\star ) \end{aligned}$$ut=εuxx-(uvx)x+ru-μu2,x∈Ω,t>0,0=vxx-v+u,x∈Ω,t>0,(⋆)in $$\Omega :=(0,L)\subset \mathbb {R}$$Ω:=(0,L)⊂R with $$L>0, \varepsilon >0, r\ge 0$$L>0,ε>0,r≥0 and $$\mu >0$$μ>0, along with the corresponding limit problem formally obtained upon taking $$\varepsilon \searrow 0$$ε↘0. For the latter hyperbolic–elliptic problem, we establish results on local existence and uniqueness within an appropriate generalized solution concept. In this context we shall moreover derive an extensibility criterion involving the norm of $$u(\cdot ,t)$$u(·,t) in $$L^\infty (\Omega )$$L∞(Ω). This will enable us to conclude that in this case $$\varepsilon =0$$ε=0,if $$\mu \ge 1$$μ≥1, then all solutions emanating from sufficiently regular initial data are global in time, whereasif $$\mu <1$$μ<1, then some solutions blow-up in finite time. The latter will reveal that the original parabolic–elliptic problem ($$\star $$⋆), though known to possess no such exploding solutions, exhibits the following property of dynamical structure generation: given any $$\mu \in (0,1)$$μ∈(0,1), one can find smooth bounded initial data with the property that for each prescribed number $$M>0$$M>0 the solution of ($$\star $$⋆) will attain values above $$M$$M at some time, provided that $$\varepsilon $$ε is sufficiently small. In particular, this means that the associated carrying capacity given by $$\frac{r}{\mu }$$rμ can be exceeded during evolution to an arbitrary extent. We finally present some numerical simulations that illustrate this type of solution behavior and that, moreover, inter alia, indicate that achieving large population densities is a transient dynamical phenomenon occurring on intermediate time scales only.

[1]  Michael Winkler,et al.  Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model , 2010 .

[2]  Michael Winkler,et al.  Finite-time blow-up in the fully parabolic Keller-Segel system , 2014 .

[3]  Piotr Biler,et al.  LOCAL AND GLOBAL SOLVABILITY OF SOME PARABOLIC SYSTEMS MODELLING CHEMOTAXIS , 1998 .

[4]  Michael Winkler,et al.  Does a ‘volume‐filling effect’ always prevent chemotactic collapse? , 2010 .

[5]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[6]  Sabine Hittmeir,et al.  Cross diffusion and nonlinear diffusion preventing blow up in the Keller-Segel model , 2011 .

[7]  Mark A. J. Chaplain,et al.  Mathematical modelling of cancer invasion of tissue: the role and effect of nonlocal interactions , 2009 .

[8]  Dirk Horstmann,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .

[9]  K. Painter,et al.  A User's Guide to Pde Models for Chemotaxis , 2022 .

[10]  Michael Winkler,et al.  Finite-time blow-up in a quasilinear system of chemotaxis , 2008 .

[11]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[12]  M. A. Herrero,et al.  A blow-up mechanism for a chemotaxis model , 1997 .

[13]  Michael Winkler,et al.  Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction , 2011 .

[14]  Lenya Ryzhik,et al.  Traveling waves for the Keller–Segel system with Fisher birth terms , 2008 .

[15]  Benoit Perthame,et al.  Global Existence for a Kinetic Model of Chemotaxis via Dispersion and Strichartz Estimates , 2007, 0709.4171.

[16]  Michael Winkler,et al.  Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system , 2011, 1112.4156.

[17]  Tohru Tsujikawa,et al.  Exponential attractor for a chemotaxis-growth system of equations , 2002 .

[18]  P. Maini,et al.  Development and applications of a model for cellular response to multiple chemotactic cues , 2000, Journal of mathematical biology.

[19]  Tohru Tsujikawa,et al.  Travelling front solutions arising in the chemotaxis-growth model , 2006 .

[20]  Christina Surulescu,et al.  On a multiscale model involving cell contractivity and its effects on tumor invasion , 2014 .

[21]  Tohru Tsujikawa,et al.  Spatial pattern formation in a chemotaxis-diffusion-growth model , 2012 .

[22]  Christian Stinner,et al.  Finite-time blowup and global-in-time unbounded solutions to a parabolic–parabolic quasilinear Keller–Segel system in higher dimensions , 2011, 1112.6202.

[23]  Michael Winkler,et al.  Boundedness in the Higher-Dimensional Parabolic-Parabolic Chemotaxis System with Logistic Source , 2010 .

[24]  W. Jäger,et al.  On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .

[25]  Philippe Laurenccot,et al.  Finite time blow-up for a one-dimensional quasilinear parabolic–parabolic chemotaxis system , 2008, 0810.3369.

[26]  Tiffany Jones,et al.  Mathematical modelling of cancer growth , 2014 .

[27]  Michael Winkler,et al.  A Chemotaxis System with Logistic Source , 2007 .

[28]  Atsushi Yagi,et al.  NORM BEHAVIOR OF SOLUTIONS TO A PARABOLIC SYSTEM OF CHEMOTAXIS , 1997 .

[29]  Hans G. Othmer,et al.  Aggregation, Blowup, and Collapse: The ABC's of Taxis in Reinforced Random Walks , 1997, SIAM J. Appl. Math..

[30]  Kevin J. Painter,et al.  Spatio-temporal chaos in a chemotaxis model , 2011 .

[31]  Dirk Horstmann,et al.  Keller-Segel model in chemotaxis and its consequences , 2003 .

[32]  Koichi Osaki,et al.  Global existence of solutions to a parabolicparabolic system for chemotaxis with weak degradation , 2011 .

[33]  H. Berg,et al.  Spatio-temporal patterns generated by Salmonella typhimurium. , 1995, Biophysical journal.

[34]  P K Maini,et al.  Bifurcating spatially heterogeneous solutions in a chemotaxis model for biological pattern generation. , 1991, Bulletin of mathematical biology.

[35]  Dariusz Wrzosek,et al.  Volume Filling Effect in Modelling Chemotaxis , 2010 .

[36]  Michael Winkler,et al.  Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect , 2010 .

[37]  C. Schmeiser,et al.  Stochastic Particle Approximation for Measure Valued Solutions of the 2D Keller-Segel System , 2009 .

[38]  B. Perthame Transport Equations in Biology , 2006 .

[39]  Tohru Tsujikawa,et al.  Lower Estimate of the Attractor Dimension for a Chemotaxis Growth System , 2006 .

[40]  F. Poupaud,et al.  Diagonal Defect Measures, Adhesion Dynamics and Euler Equation , 2002 .

[41]  Toshitaka Nagai,et al.  Blowup of nonradial solutions to parabolic–elliptic systems modeling chemotaxis in two-dimensional domains , 2001 .

[42]  Philippe Laurençot,et al.  Global Existence vs. Blowup in a One-dimensional Smoluchowski-Poisson System , 2011 .

[43]  D. F. Parker,et al.  A New Deterministic Spatio-Temporal Continuum Model for Biofilm Development , 2001 .

[44]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[45]  M. Chaplain,et al.  Mathematical modelling of cancer cell invasion of tissue , 2005, Math. Comput. Model..

[46]  Jerome Percus,et al.  Nonlinear aspects of chemotaxis , 1981 .

[47]  K. Painter,et al.  Volume-filling and quorum-sensing in models for chemosensitive movement , 2002 .