Expressivity of Variational Quantum Machine Learning on the Boolean Cube

Categorical data play an important part in machine learning research and appears in a variety of applications. Models that can express large classes of real-valued functions on the Boolean cube are useful for problems involving discrete-valued data types, including those which are not Boolean. To this date, the commonly used schemes for embedding classical data into variational quantum machine learning models encode continuous values. Here, we investigate quantum embeddings for encoding Boolean-valued data into parameterized quantum circuits used for machine learning tasks. We narrow down representability conditions for functions on the <inline-formula><tex-math notation="LaTeX">$n$</tex-math></inline-formula>-dimensional Boolean cube with respect to previously known results, using two quantum embeddings: a phase embedding and an embedding based on quantum random access codes. We show that for any real-valued function on the <inline-formula><tex-math notation="LaTeX">$n$</tex-math></inline-formula>-dimensional Boolean cube, there exists a variational linear quantum model based on a phase embedding using <inline-formula><tex-math notation="LaTeX">$n$</tex-math></inline-formula> qubits that can represent it and an ensemble of such models using <inline-formula><tex-math notation="LaTeX">$d < n$</tex-math></inline-formula> qubits that can express any function with degree at most <inline-formula><tex-math notation="LaTeX">$d$</tex-math></inline-formula>. Additionally, we prove that variational linear quantum models that use the quantum random access code embedding can express functions on the Boolean cube with degree <inline-formula><tex-math notation="LaTeX">$d\leq \lceil {n}/{3}\rceil$</tex-math></inline-formula> using <inline-formula><tex-math notation="LaTeX">$\lceil {n}/{3}\rceil$</tex-math></inline-formula> qubits, and that an ensemble of such models can represent any function on the Boolean cube with degree <inline-formula><tex-math notation="LaTeX">$d\leq \lceil {n}/{3}\rceil$</tex-math></inline-formula>. Furthermore, we discuss the potential benefits of each embedding and the impact of serial repetitions. Finally, we demonstrate the use of the embeddings presented by performing numerical simulations and experiments on IBM quantum processors using the Qiskit machine learning framework.

[1]  Hendrik Poulsen Nautrup,et al.  Quantum machine learning beyond kernel methods , 2021, Nature Communications.

[2]  Dyon van Vreumingen,et al.  Structural risk minimization for quantum linear classifiers , 2021, Quantum.

[3]  Stefan M. Wild,et al.  Bandwidth Enables Generalization in Quantum Kernel Models , 2022, arXiv.org.

[4]  Shouvanik Chakrabarti,et al.  A Convergence Theory for Over-parameterized Variational Quantum Eigensolvers , 2022, ArXiv.

[5]  Marco Pistoia,et al.  A Survey of Quantum Computing for Finance , 2022, 2201.02773.

[6]  Patrick J. Coles,et al.  Generalization in quantum machine learning from few training data , 2021, Nature Communications.

[7]  Jennifer R. Glick,et al.  Representation Learning via Quantum Neural Tangent Kernels , 2021, PRX Quantum.

[8]  Dong-Ling Deng,et al.  Sample complexity of learning parametric quantum circuits , 2021, Quantum Science and Technology.

[9]  D. Tao,et al.  Efficient Measure for the Expressivity of Variational Quantum Algorithms. , 2021, Physical review letters.

[10]  Kaifeng Bu,et al.  On the statistical complexity of quantum circuits , 2021, Physical Review A.

[11]  Srinivasan Arunachalam,et al.  Quantum learning algorithms imply circuit lower bounds , 2020, 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS).

[12]  S. Benjamin,et al.  Quantum analytic descent , 2020, Physical Review Research.

[13]  Toshinari Itoko,et al.  Approximate Solutions of Combinatorial Problems via Quantum Relaxations , 2021, IEEE Transactions on Quantum Engineering.

[14]  K. Fujii,et al.  Quantum tangent kernel , 2021, Physical Review Research.

[15]  Marco Pistoia,et al.  Quantum Machine Learning for Finance ICCAD Special Session Paper , 2021, 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD).

[16]  M. Cerezo,et al.  Theory of overparametrization in quantum neural networks , 2021, ArXiv.

[17]  Marco Pistoia,et al.  Quantum Machine Learning for Finance , 2021, ArXiv.

[18]  Marius Claudiu Popescu,et al.  Learning bounds for quantum circuits in the agnostic setting , 2021, Quantum Information Processing.

[19]  Chih-Chieh Chen,et al.  On the Expressibility and Overfitting of Quantum Circuit Learning , 2021, ACM Transactions on Quantum Computing.

[20]  Raymond H. Putra,et al.  Trainable Discrete Feature Embeddings for Variational Quantum Classifier , 2021, ArXiv.

[21]  Jens Eisert,et al.  Encoding-dependent generalization bounds for ewline parametrized quantum circuits , 2021 .

[22]  Bernhard Scholkopf,et al.  The Inductive Bias of Quantum Kernels , 2021, NeurIPS.

[23]  Raymond H. Putra,et al.  Optimizing Parameterized Quantum Circuits With Free-Axis Single-Qubit Gates , 2021, IEEE Transactions on Quantum Engineering.

[24]  Joseph Bowles,et al.  Avoiding local minima in Variational Quantum Algorithms with Neural Networks , 2021, 2104.02955.

[25]  M. Kim,et al.  Capacity and quantum geometry of parametrized quantum circuits , 2021, PRX Quantum.

[26]  M. Benedetti,et al.  Structure optimization for parameterized quantum circuits , 2021, Quantum.

[27]  Maria Schuld,et al.  Quantum machine learning models are kernel methods , 2021, 2101.11020.

[28]  M. Kliesch,et al.  Training Variational Quantum Algorithms Is NP-Hard. , 2021, Physical review letters.

[29]  S. Yelin,et al.  Entanglement devised barren plateau mitigation , 2020, Physical Review Research.

[30]  M. Cerezo,et al.  Variational quantum algorithms , 2020, Nature Reviews Physics.

[31]  Ashley Montanaro,et al.  Quantum Random Access Codes for Boolean Functions , 2020, Quantum.

[32]  Arthur Pesah,et al.  Absence of Barren Plateaus in Quantum Convolutional Neural Networks , 2020, Physical Review X.

[33]  H. Neven,et al.  Power of data in quantum machine learning , 2020, Nature Communications.

[34]  Stefan Woerner,et al.  The power of quantum neural networks , 2020, Nature Computational Science.

[35]  K. Temme,et al.  A rigorous and robust quantum speed-up in supervised machine learning , 2020, Nature Physics.

[36]  Kohei Nakajima,et al.  Universal Approximation Property of Quantum Machine Learning Models in Quantum-Enhanced Feature Spaces. , 2020, Physical review letters.

[37]  Maria Schuld,et al.  Effect of data encoding on the expressive power of variational quantum-machine-learning models , 2020, Physical Review A.

[38]  P. Rebentrost,et al.  Near-term quantum algorithms for linear systems of equations with regression loss functions , 2019, New Journal of Physics.

[39]  Liu Liu,et al.  Toward Trainability of Quantum Neural Networks. , 2020, 2011.06258.

[40]  Patrick Huembeli,et al.  Characterizing the loss landscape of variational quantum circuits , 2020, Quantum Science and Technology.

[41]  Stefano Lodi,et al.  Quantum Ensemble for Classification , 2020, ArXiv.

[42]  Adenilton J. da Silva,et al.  Quantum ensemble of trained classifiers , 2020, 2020 International Joint Conference on Neural Networks (IJCNN).

[43]  Jakub Marecek,et al.  Quantum Computing for Finance: State-of-the-Art and Future Prospects , 2020, IEEE Transactions on Quantum Engineering.

[44]  Patrick J. Coles,et al.  Variational Quantum Linear Solver. , 2020 .

[45]  Raymond H. Putra,et al.  Efficient Discrete Feature Encoding for Variational Quantum Classifier , 2020, 2020 IEEE International Conference on Quantum Computing and Engineering (QCE).

[46]  John T. Hancock,et al.  Survey on categorical data for neural networks , 2020, Journal of Big Data.

[47]  Amit Daniely,et al.  Learning Parities with Neural Networks , 2020, NeurIPS.

[48]  Matthias C. Caro,et al.  Pseudo-dimension of quantum circuits , 2020, Quantum Machine Intelligence.

[49]  J. Stokes,et al.  Quantum Natural Gradient , 2019, Quantum.

[50]  Jos'e I. Latorre,et al.  Data re-uploading for a universal quantum classifier , 2019, Quantum.

[51]  Dirk Oliver Theis,et al.  Input Redundancy for Parameterized Quantum Circuits , 2019, Frontiers in Physics.

[52]  Arthur G. Rattew,et al.  A Domain-agnostic, Noise-resistant, Hardware-efficient Evolutionary Variational Quantum Eigensolver , 2019, 1910.09694.

[53]  Greg Yang,et al.  A Fine-Grained Spectral Perspective on Neural Networks , 2019, ArXiv.

[54]  Marcello Benedetti,et al.  Parameterized quantum circuits as machine learning models , 2019, Quantum Science and Technology.

[55]  Jing Duan,et al.  Financial system modeling using deep neural networks (DNNs) for effective risk assessment and prediction , 2019, J. Frankl. Inst..

[56]  Ying Li,et al.  Theory of variational quantum simulation , 2018, Quantum.

[57]  C. Gogolin,et al.  Evaluating analytic gradients on quantum hardware , 2018, Physical Review A.

[58]  Soonwon Choi,et al.  Quantum convolutional neural networks , 2018, Nature Physics.

[59]  Ronald de Wolf,et al.  Two new results about quantum exact learning , 2021, Quantum.

[60]  Kristan Temme,et al.  Supervised learning with quantum-enhanced feature spaces , 2018, Nature.

[61]  Ying Li,et al.  Variational ansatz-based quantum simulation of imaginary time evolution , 2018, npj Quantum Information.

[62]  Maria Schuld,et al.  Quantum Machine Learning in Feature Hilbert Spaces. , 2018, Physical review letters.

[63]  Andris Ambainis,et al.  Understanding Quantum Algorithms via Query Complexity , 2017, Proceedings of the International Congress of Mathematicians (ICM 2018).

[64]  Rupak Biswas,et al.  From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz , 2017, Algorithms.

[65]  Maria Schuld,et al.  Supervised Learning with Quantum Computers , 2018 .

[66]  H. Neven,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[67]  Keisuke Fujii,et al.  Quantum circuit learning , 2018, Physical Review A.

[68]  Hartmut Neven,et al.  Classification with Quantum Neural Networks on Near Term Processors , 2018, 1802.06002.

[69]  Maria Schuld,et al.  Quantum ensembles of quantum classifiers , 2017, Scientific Reports.

[70]  Ronald de Wolf,et al.  Guest Column: A Survey of Quantum Learning Theory , 2017, SIGA.

[71]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[72]  Andris Ambainis,et al.  Efficient Quantum Algorithms for (Gapped) Group Testing and Junta Testing , 2015, SODA.

[73]  Maya R. Gupta,et al.  Monotonic Calibrated Interpolated Look-Up Tables , 2015, J. Mach. Learn. Res..

[74]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[75]  Aleksandrs Belovs,et al.  Quantum Algorithms for Learning Symmetric Juntas via the Adversary Bound , 2013, 2014 IEEE 29th Conference on Computational Complexity (CCC).

[76]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[77]  Ferenc Weisz,et al.  Summability of Multi-Dimensional Trigonometric Fourier Series , 2012, 1206.1789.

[78]  Maris Ozols,et al.  Quantum Random Access Codes with Shared Randomness , 2008, 0810.2937.

[79]  Ronald de Wolf,et al.  A Brief Introduction to Fourier Analysis on the Boolean Cube , 2008, Theory Comput..

[80]  B. Schölkopf,et al.  Kernel methods in machine learning , 2007, math/0701907.

[81]  Sebastian Dörn Quantum Algorithms for Algebraic Problems ∗ , 2008 .

[82]  Rocco A. Servedio,et al.  Quantum Algorithms for Learning and Testing Juntas , 2007, Quantum Inf. Process..

[83]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[84]  Ryan O'Donnell,et al.  Learning juntas , 2003, STOC '03.

[85]  Andris Ambainis,et al.  Dense quantum coding and a lower bound for 1-way quantum automata , 1998, STOC '99.

[86]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[87]  Nader H. Bshouty,et al.  Learning DNF over the uniform distribution using a quantum example oracle , 1995, COLT '95.

[88]  M. Powell A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation , 1994 .

[89]  Umesh V. Vazirani,et al.  An Introduction to Computational Learning Theory , 1994 .

[90]  Avrim Blum,et al.  Relevant Examples and Relevant Features: Thoughts from Computational Learning Theory , 1994 .