An Incremental Algorithm for Computing Cylindrical Algebraic Decompositions

In this paper, we propose an incremental algorithm for computing cylindrical algebraic decompositions. The algorithm consists of two parts: computing a complex cylindrical tree and refining this complex tree into a cylindrical tree in real space. The incrementality comes from the first part of the algorithm, where a complex cylindrical tree is constructed by refining a previous complex cylindrical tree with a polynomial constraint. We have implemented our algorithm in Maple. The experimentation shows that the proposed algorithm outperforms existing ones for many examples taken from the literature.

[1]  H. Hong An improvement of the projection operator in cylindrical algebraic decomposition , 1990, ISSAC '90.

[2]  James H. Davenport,et al.  The complexity of quantifier elimination and cylindrical algebraic decomposition , 2007, ISSAC '07.

[3]  Scott McCallum An improved projection operation for cylindrical algebraic decomposition (computer algebra, geometry, algorithms) , 1984 .

[4]  Bud Mishra,et al.  Algorithmic Algebra , 1993, Texts and Monographs in Computer Science.

[5]  Hirokazu Anai,et al.  An effective implementation of a symbolic-numeric cylindrical algebraic decomposition for quantifier elimination , 2009, SNC '09.

[6]  Christopher W. Brown Improved Projection for Cylindrical Algebraic Decomposition , 2001, J. Symb. Comput..

[7]  Changbo Chen,et al.  Real Root Isolation of Regular Chains , 2009, ASCM.

[8]  Adam W. Strzebonski Computation with semialgebraic sets represented by cylindrical algebraic formulas , 2010, ISSAC.

[9]  M. M. Maza On Triangular Decompositions of Algebraic Varieties , 2000 .

[10]  George E. Collins,et al.  Cylindrical Algebraic Decomposition II: An Adjacency Algorithm for the Plane , 1984, SIAM J. Comput..

[11]  Christopher W. Brown,et al.  On using bi-equational constraints in CAD construction , 2005, ISSAC.

[12]  Scott McCallum On propagation of equational constraints in CAD-based quantifier elimination , 2001, ISSAC '01.

[13]  Vladimir P. Gerdt,et al.  Thomas Decomposition of Algebraic and Differential Systems , 2010, CASC.

[14]  Adam W. Strzebonski,et al.  Solving Systems of Strict Polynomial Inequalities , 2000, J. Symb. Comput..

[15]  Changbo Chen,et al.  Computing cylindrical algebraic decomposition via triangular decomposition , 2009, ISSAC '09.

[16]  Christopher W. Brown QEPCAD B: a program for computing with semi-algebraic sets using CADs , 2003, SIGS.

[17]  Thomas Sturm,et al.  REDLOG: computer algebra meets computer logic , 1997, SIGS.

[18]  Marc Moreno Maza,et al.  Lifting techniques for triangular decompositions , 2005, ISSAC.

[19]  Changbo Chen,et al.  Algorithms for computing triangular decompositions of polynomial systems , 2011, ISSAC '11.

[20]  Dongming Wang,et al.  Decomposing Polynomial Systems into Simple Systems , 1998, J. Symb. Comput..

[21]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[22]  Changbo Chen,et al.  Comprehensive Triangular Decomposition , 2007, CASC.

[23]  G. E. Collins,et al.  Quantifier Elimination by Cylindrical Algebraic Decomposition — Twenty Years of Progress , 1998 .

[24]  Bruno Buchberger,et al.  Speeding-up Quantifier Elimination by Gr?bner Bases , 1991 .

[25]  Scott McCallum Solving Polynomial Strict Inequalities Using Cylindrical Algebraic Decomposition , 1993, Comput. J..

[26]  Changbo Chen,et al.  Algorithms for computing triangular decomposition of polynomial systems , 2012, J. Symb. Comput..

[27]  Adam W. Strzebonski,et al.  Cylindrical Algebraic Decomposition using validated numerics , 2006, J. Symb. Comput..

[28]  Dongming Wang,et al.  Computing Triangular Systems and Regular Systems , 2000, J. Symb. Comput..

[29]  Andreas Seidl,et al.  Efficient projection orders for CAD , 2004, ISSAC '04.

[30]  George E. Collins,et al.  Interval Arithmetic in Cylindrical Algebraic Decomposition , 2002, J. Symb. Comput..

[31]  B. F. Caviness,et al.  Quantifier Elimination and Cylindrical Algebraic Decomposition , 2004, Texts and Monographs in Symbolic Computation.

[32]  Scott McCallum,et al.  An Improved Projection Operation for Cylindrical Algebraic Decomposition of Three-Dimensional Space , 1988, J. Symb. Comput..

[33]  Lionel Ducos Optimizations of the subresultant algorithm , 2000 .

[34]  Scott McCallum,et al.  An Improved Projection Operation for Cylindrical Algebraic Decomposition , 1985, European Conference on Computer Algebra.

[35]  Christopher W. Brown,et al.  On delineability of varieties in CAD-based quantifier elimination with two equational constraints , 2009, ISSAC '09.

[36]  George E. Collins,et al.  Partial Cylindrical Algebraic Decomposition for Quantifier Elimination , 1991, J. Symb. Comput..

[37]  Changbo Chen Solving Polynomial Systems via Triangular Decomposition , 2011 .

[38]  James H. Davenport,et al.  Speeding Up Cylindrical Algebraic Decomposition by Gröbner Bases , 2012, AISC/MKM/Calculemus.