Dempster-Shafer belief structures for decision making under uncertainty

We discuss the need for tools for representing various types of uncertain information in decision-making. We introduce the Dempster-Shafer belief structure and discuss how it provides a formal mathematical framework for representing various types of uncertain information. We provide some fundamental ideas and mechanisms related to these structures. We then investigate their role in the important task of decision-making under uncertainty.

[1]  J. Kohlas,et al.  A Mathematical Theory of Hints: An Approach to the Dempster-Shafer Theory of Evidence , 1995 .

[2]  Claude E. Shannon,et al.  The Mathematical Theory of Communication , 1950 .

[3]  Shanlin Yang,et al.  Analyzing the applicability of Dempster's rule to the combination of interval-valued belief structures , 2011, Expert Syst. Appl..

[4]  M. O'Hagan,et al.  Aggregating Template Or Rule Antecedents In Real-time Expert Systems With Fuzzy Set Logic , 1988, Twenty-Second Asilomar Conference on Signals, Systems and Computers.

[5]  Haim Gaifman,et al.  A Theory of Higher Order Probabilities , 1986, TARK.

[6]  Edward Beltrami,et al.  Uncertainty and Information , 2020, What Is Random?.

[7]  Peter Walley,et al.  Towards a unified theory of imprecise probability , 2000, Int. J. Approx. Reason..

[8]  R. Yager Quantifier guided aggregation using OWA operators , 1996, Int. J. Intell. Syst..

[9]  Ronald R. Yager,et al.  Classic Works of the Dempster-Shafer Theory of Belief Functions: An Introduction , 2008, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[10]  James Llinas,et al.  Multisensor Data Fusion , 1990 .

[11]  Ronald R. Yager,et al.  Entropy and Specificity in a Mathematical Theory of Evidence , 2008, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[12]  Ronald R. Yager,et al.  Classic Works of the Dempster-Shafer Theory of Belief Functions , 2010, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[13]  Ronald R. Yager,et al.  The entailment principle for dempster—shafer granules , 1986, Int. J. Intell. Syst..

[14]  Philippe Smets,et al.  The Transferable Belief Model , 1994, Artif. Intell..

[15]  Ronald R. Yager,et al.  Decision Making Under Dempster-Shafer Uncertainties , 1992, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[16]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[17]  Judea Pearl,et al.  Do we need higher-order probabilities, and, if so, what do they mean? , 1987, Int. J. Approx. Reason..

[18]  J. Kyburg Higher order probability and intervals , 1988 .

[19]  Naif Alajlan,et al.  Measure based representation of uncertain information , 2012, Fuzzy Optim. Decis. Mak..

[20]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[21]  Ronald R. Yager,et al.  Human Behavioral Modeling Using Fuzzy and Dempster–Shafer Theory , 2008 .

[22]  Edward H. Shortliffe,et al.  Rule Based Expert Systems: The Mycin Experiments of the Stanford Heuristic Programming Project (The Addison-Wesley series in artificial intelligence) , 1984 .

[23]  R. Yager A class of fuzzy measures generated from a Dempster–Shafer belief structure , 1999 .

[24]  Smets Ph.,et al.  Belief functions, Non-standard logics for automated reasoning , 1988 .

[25]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[26]  Ronald R. Yager,et al.  Arithmetic and Other Operations on Dempster-Shafer Structures , 1986, Int. J. Man Mach. Stud..

[27]  R. Yager On the dempster-shafer framework and new combination rules , 1987, Inf. Sci..

[28]  J. Kacprzyk,et al.  Advances in the Dempster-Shafer theory of evidence , 1994 .

[29]  Zoltan Domotor Higher order probabilities , 1981 .

[30]  T. Fine,et al.  Towards a Frequentist Theory of Upper and Lower Probability , 1982 .

[31]  John Yen,et al.  Generalizing the Dempster-Schafer theory to fuzzy sets , 1990, IEEE Trans. Syst. Man Cybern..

[32]  Lotfi A. Zadeh,et al.  A Simple View of the Dempster-Shafer Theory of Evidence and Its Implication for the Rule of Combination , 1985, AI Mag..

[33]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[34]  Prakash P. Shenoy,et al.  Propagating Belief Functions with Local Computations , 1986, IEEE Expert.

[35]  Edward H. Shortliffe,et al.  The Dempster-Shafer theory of evidence , 1990 .

[36]  Bruce G. Buchanan,et al.  The MYCIN Experiments of the Stanford Heuristic Programming Project , 1985 .

[37]  B. Buck,et al.  Maximum entropy in action : a collection of expository essays , 1991 .

[38]  Hung T. Nguyen,et al.  On decision making using belief functions , 1994 .