Tactile-Based Pantomime Grasping: Knowledge of Results is Not Enough to Support an Absolute Calibration

ABSTRACT Tactile-based pantomime-grasping requires that a performer use their right hand to ‘grasp’ a target previously held in the palm of their opposite hand – a task examining how mechanoreceptive (i.e., tactile) feedback informs the motor system about an object property (i.e., size). Here, we contrasted pantomime-grasps performed with (H+) and without (H−) haptic feedback (i.e., thumb and forefinger position information derived from the grasping hand touching the object) with a condition providing visual KR (VKR) related to absolute target object size. Just-noticeable-difference (JND) scores were computed to determine whether responses adhered to – or violated – Weber's law. JNDs for H+ trials violated the law, whereas H− and VKR trials adhered to the law. Accordingly, results demonstrate that haptic feedback – and not KR – supports an absolute tactile-haptic calibration.

[1]  Melvyn A. Goodale,et al.  Real-time vision, tactile cues, and visual form agnosia: removing haptic feedback from a “natural” grasping task induces pantomime-like grasps , 2015, Front. Hum. Neurosci..

[2]  M. Bryden Measuring handedness with questionnaires , 1977, Neuropsychologia.

[3]  E C Poulton,et al.  The effect of fatigue upon inspection work. , 1973, Applied ergonomics.

[4]  Matthew Heath,et al.  Goal-directed reaching: movement strategies influence the weighting of allocentric and egocentric visual cues , 2008, Experimental Brain Research.

[5]  M. Goodale,et al.  Ventral occipital lesions impair object recognition but not object-directed grasping: an fMRI study. , 2003, Brain : a journal of neurology.

[6]  H. Zelaznik,et al.  Motor-output variability: a theory for the accuracy of rapid motor acts. , 1979, Psychological review.

[7]  C. Winstein,et al.  Learning–performance distinction and memory processes for motor skills: A focused review and perspective , 2012, Behavioural Brain Research.

[8]  M. Heath,et al.  Weber’s law in tactile grasping and manual estimation: Feedback-dependent evidence for functionally distinct processing streams , 2014, Brain and Cognition.

[9]  R. Klatzky,et al.  Haptic perception: A tutorial , 2009, Attention, perception & psychophysics.

[10]  R. Riener,et al.  Augmented visual, auditory, haptic, and multimodal feedback in motor learning: A review , 2012, Psychonomic Bulletin & Review.

[11]  M. Heath,et al.  Goal-directed grasping: The dimensional properties of an object influence the nature of the visual information mediating aperture shaping , 2013, Brain and Cognition.

[12]  M. Heath,et al.  Distinct Visual Cues Mediate Aperture Shaping for Grasping and Pantomime-Grasping Tasks , 2013, Journal of motor behavior.

[13]  Matthew Heath,et al.  The visual coding of grip aperture shows an early but not late adherence to Weber's law , 2011, Neuroscience Letters.

[14]  L. Jakobson,et al.  Differences in the visual control of pantomimed and natural grasping movements , 1994, Neuropsychologia.

[15]  M. Heath,et al.  Manual estimations of functionally graspable target objects adhere to Weber’s law , 2017, Experimental Brain Research.

[16]  A. Milner,et al.  The Magic Grasp: Motor Expertise in Deception , 2011, PloS one.

[17]  Charles E. Pettypiece,et al.  Integration of haptic and visual size cues in perception and action revealed through cross-modal conflict , 2010, Experimental Brain Research.

[18]  Matthew Heath,et al.  The spatial relations between stimulus and response determine an absolute visuo-haptic calibration in pantomime-grasping , 2017, Brain and Cognition.

[19]  Thomas Schenk,et al.  No Dissociation between Perception and Action in Patient DF When Haptic Feedback is Withdrawn , 2012, The Journal of Neuroscience.

[20]  Stephanie Hosang,et al.  Memory delay and haptic feedback influence the dissociation of tactile cues for perception and action , 2015, Neuropsychologia.

[21]  R. Schmidt,et al.  Knowledge of results and motor learning: a review and critical reappraisal. , 1984, Psychological bulletin.

[22]  Melvyn A. Goodale,et al.  Grasping two-dimensional images and three-dimensional objects in visual-form agnosia , 2002, Experimental Brain Research.

[23]  Peter Wolf,et al.  Terminal Feedback Outperforms Concurrent Visual, Auditory, and Haptic Feedback in Learning a Complex Rowing-Type Task , 2013, Journal of motor behavior.

[24]  M. Masson,et al.  Using confidence intervals in within-subject designs , 1994, Psychonomic bulletin & review.

[25]  M. Ernst,et al.  Humans integrate visual and haptic information in a statistically optimal fashion , 2002, Nature.

[26]  Shirin Davarpanah Jazi,et al.  Pantomime-Grasping: Advance Knowledge of Haptic Feedback Availability Supports an Absolute Visuo-Haptic Calibration , 2016, Front. Hum. Neurosci..

[27]  M. Jeannerod The timing of natural prehension movements. , 1984, Journal of motor behavior.

[28]  D E Sherwood,et al.  Effect of Bandwidth Knowledge of Results on Movement Consistency , 1988, Perceptual and motor skills.

[29]  Stephanie Hosang,et al.  Grasping a 2D object: terminal haptic feedback supports an absolute visuo-haptic calibration , 2015, Experimental Brain Research.

[30]  M. Goodale Transforming vision into action , 2011, Vision Research.

[31]  L. Marks,et al.  Chapter 2 – Psychophysical Scaling , 1998 .

[32]  Tzvi Ganel,et al.  Visual coding for action violates fundamental psychophysical principles , 2008, Current Biology.

[33]  M. Heath,et al.  An Inverse Grip Starting Posture Gives Rise to Time-Dependent Adherence to Weber's Law: A Reply to Ganel et al. (2014). , 2015, Journal of Vision.

[34]  David A. Westwood,et al.  Pantomimed actions may be controlled by the ventral visual stream , 2000, Experimental Brain Research.

[35]  Matthew Heath,et al.  Egocentric and Allocentric Visual Cues Influence the Specification of Movement Distance and Direction , 2008, Journal of motor behavior.

[36]  E. Pedhazur Multiple Regression in Behavioral Research: Explanation and Prediction , 1982 .

[37]  Renaud Ronsse,et al.  Multisensory Integration in Dynamical Behaviors: Maximum Likelihood Estimation across Bimanual Skill Learning , 2009, The Journal of Neuroscience.

[38]  H Chris Dijkerman,et al.  Grasping Weber's illusion: The effect of receptor density differences on grasping and matching , 2008, Cognitive neuropsychology.

[39]  E. Brenner,et al.  A new view on grasping. , 1999, Motor control.

[40]  Michael I. Jordan,et al.  An internal model for sensorimotor integration. , 1995, Science.

[41]  E. Galanter,et al.  Psychophysical Scaling ' " , 2006 .

[42]  M. Lemay,et al.  A distance effect in a manual aiming task to remembered targets: a test of three hypotheses , 2001, Experimental Brain Research.

[43]  H. C. Dijkerman,et al.  Somatosensory processes subserving perception and action , 2007, Behavioral and Brain Sciences.

[44]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[45]  M. A. Goodale,et al.  Factors affecting higher-order movement planning: a kinematic analysis of human prehension , 2004, Experimental Brain Research.

[46]  D. Westwood,et al.  Pantomime-grasping: the ‘return’ of haptic feedback supports the absolute specification of object size , 2015, Experimental Brain Research.

[47]  Mark Mon-Williams,et al.  Natural prehension in trials without haptic feedback but only when calibration is allowed , 2007, Neuropsychologia.