Comparative Study of Plasmonic Colors from All-Metal Structures of Posts and Pits

Thin-film and isolated metal nanostructures with localized plasmon resonances in the visible spectrum are promising for commercial adoption of ultrahigh resolution color printing. As metallization processes used in printing industries tend to produce thick and continuous metal coatings, challenges remain in designing structures with similar local resonances to produce colors. Here, we demonstrate color elements through surface textures on an encapsulated silver surface thus bringing plasmonic colors a step closer to commercial printing processes. We probe the chromatic range of protrusions and indentations, two possible architectures that could form on an all-metal surface, and further investigate the modulation of color when the protrusions evolve into the reversed structures of indentations. Notably, the indentations generate pitch-dependent colors; albeit protrusions generate size-dependent colors that are superior. Building upon this blueprint for all-metal plasmonic color printing, we highlight the s...

[1]  Zhiqiang Wei,et al.  Scalable, full-colour and controllable chromotropic plasmonic printing , 2015, Nature Communications.

[2]  L. Guo,et al.  Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting. , 2009, ACS nano.

[3]  J. Valentine,et al.  Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. , 2014, Nano letters.

[4]  Tsuyoshi Nomura,et al.  Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes , 2011 .

[5]  Mark W. Knight,et al.  Aluminum plasmonic nanoantennas. , 2012, Nano letters.

[6]  Benjamin Gallinet,et al.  Four-Fold Color Filter Based on Plasmonic Phase Retarder , 2016 .

[7]  Peter Nordlander,et al.  Color‐Selective and CMOS‐Compatible Photodetection Based on Aluminum Plasmonics , 2014, Advanced materials.

[8]  Michel Bosman,et al.  Nanoplasmonics: classical down to the nanometer scale. , 2012, Nano letters.

[9]  L. Jay Guo,et al.  High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography , 2011 .

[10]  S. Reynaud,et al.  Optical security device for document protection using plasmon resonant transmission through a thin corrugated metallic film embedded in a plastic foil , 2013 .

[11]  Thomas W. H. Oates,et al.  The effect of atmospheric tarnishing on the optical and structural properties of silver nanoparticles , 2013 .

[12]  Cheng Zhang,et al.  Angle-Insensitive Structural Colours based on Metallic Nanocavities and Coloured Pixels beyond the Diffraction Limit , 2012, Scientific Reports.

[13]  Cheng-Wei Qiu,et al.  Plasmonic color palettes for photorealistic printing with aluminum nanostructures. , 2014, Nano letters.

[14]  Nikolay I. Zheludev,et al.  Optical response of plasmonic relief meta-surfaces , 2012 .

[15]  Xiangang Luo,et al.  Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. , 2010, Nature communications.

[16]  L. Gauckler,et al.  Thin Film Deposition Using Spray Pyrolysis , 2005 .

[17]  Beibei Zeng,et al.  Effect of relative nanohole position on colour purity of ultrathin plasmonic subtractive colour filters. , 2015, Nanotechnology.

[18]  Anders Kristensen,et al.  Plasmonic metasurfaces for coloration of plastic consumer products. , 2014, Nano letters.

[19]  Huigao Duan,et al.  Printing colour at the optical diffraction limit. , 2012, Nature nanotechnology.

[20]  Ole Albrektsen,et al.  Subwavelength plasmonic color printing protected for ambient use. , 2014, Nano letters.

[21]  Hailong Hu,et al.  Plasmon-modulated photoluminescence of individual gold nanostructures. , 2012, ACS nano.

[22]  Eun-Soo Kim,et al.  Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array. , 2014, Nano letters.

[23]  Peter Nordlander,et al.  Vivid, full-color aluminum plasmonic pixels , 2014, Proceedings of the National Academy of Sciences.

[24]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[25]  A. Feuerstein,et al.  High vacuum evaporation of ferromagnetic materials -- A new production technology for magnetic tapes , 1984 .

[26]  Nikolay I Zheludev,et al.  Continuous metal plasmonic frequency selective surfaces. , 2011, Optics express.

[27]  R. Lopez,et al.  Rapid tarnishing of silver nanoparticles in ambient laboratory air , 2005 .

[28]  Xiao Ming Goh,et al.  All-metal nanostructured substrates as subtractive color reflectors with near-perfect absorptance. , 2015, Optics express.

[29]  Beibei Zeng,et al.  Angle-insensitive plasmonic color filters with randomly distributed silver nanodisks. , 2015, Optics letters.

[30]  Benjamin Gallinet,et al.  Color Rendering Plasmonic Aluminum Substrates with Angular Symmetry Breaking. , 2015, ACS nano.

[31]  Tal Ellenbogen,et al.  Chromatic plasmonic polarizers for active visible color filtering and polarimetry. , 2012, Nano letters.

[32]  Shawn J. Tan,et al.  ENGINEERING PLASMONIC COLORS IN METAL NANOSTRUCTURES , 2014 .

[33]  Jonathan M Cooper,et al.  Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette. , 2016, ACS nano.

[34]  Lei Zhang,et al.  Three-dimensional plasmonic stereoscopic prints in full colour , 2014, Nature Communications.