Gevrey Smoothing Effect of Solutions to Non-Cutoff Boltzmann Equation for Soft Potential with Mild and Critical Singularity

In this paper we study the Gevrey smoothing effect of solutions to the non-cutoff spatially homogeneous and inhomogeneous Boltzmann equation for soft potential. We consider the mild singularity case $s<1/2$ as we did in the previous work for spatially homogeneous case (J. Diff. Equ. 253(4) (2012), 1172-1190. DOI: 10.1016/j.jde.2012.04.023) and for spatially inhomogeneous case (arXiv:1304.2971), and try to extend the range of $\gamma$. We derive a new coercivity estimate for collision operator, using which we can obtain the Gevrey regularity for $\gamma \in (-5/2,0)$ improving the previous assumption $\gamma \in (-1-2s,0)$. Besides, we consider $\gamma$ and $s$ separately instead of viewing $\gamma+2s$ as one untied quantity.

[1]  Z. Yin,et al.  Gevrey Regularity for Solutions of the Non-Cutoff Boltzmann Equation: Spatially Inhomogeneous Case , 2013, 1304.2971.

[2]  Z. Yin,et al.  Gevrey regularity of spatially homogeneous Boltzmann equation without cutoff , 2012, 1201.2048.

[3]  Chao-Jiang Xu,et al.  Smoothing effect of weak solutions for the spatially homogeneous Boltzmann Equation without angular cutoff , 2011, 1104.5648.

[4]  Chao-Jiang Xu,et al.  The Boltzmann Equation Without Angular Cutoff in the Whole Space: Qualitative Properties of Solutions , 2010, 1008.3442.

[5]  Chao-Jiang Xu,et al.  The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential , 2010, 1007.0304.

[6]  Chao-Jiang Xu,et al.  The Boltzmann equation without angular cutoff in the whole space: II, Global existence for hard potential , 2010, 1005.0447.

[7]  S. Ukai,et al.  Gevrey smoothing effect of solutions for spatially homogeneous nonlinear Boltzmann equation without angular cutoff , 2010 .

[8]  Philip T. Gressman,et al.  Global classical solutions of the Boltzmann equation without angular cut-off , 2009, 0912.0888.

[9]  Radjesvarane Alexandre A REVIEW OF BOLTZMANN EQUATION WITH SINGULAR KERNELS , 2009 .

[10]  Chao-Jiang Xu,et al.  Regularizing Effect and Local Existence for the Non-Cutoff Boltzmann Equation , 2009, 0909.1229.

[11]  Chao-Jiang Xu,et al.  Ultra-analytic effect of Cauchy problem for a class of kinetic equations , 2009, 0903.3703.

[12]  G. Furioli,et al.  Propagation of Gevrey regularity for solutions of the Boltzmann equation for Maxwellian molecules , 2006, math/0611268.

[13]  Bernt Wennberg,et al.  Smoothness of the Solution of the Spatially Homogeneous Boltzmann Equation without Cutoff , 2005 .

[14]  Tai-Ping Liu,et al.  Energy method for Boltzmann equation , 2004 .

[15]  Tai-Ping Liu,et al.  Boltzmann Equation: Micro-Macro Decompositions and Positivity of Shock Profiles , 2004 .

[16]  C. Villani Chapter 2 – A Review of Mathematical Topics in Collisional Kinetic Theory , 2002 .

[17]  Radjesvarane Alexandre,et al.  Entropy Dissipation and Long-Range Interactions , 2000 .

[18]  S. Ukai Local solutions in gevrey classes to the nonlinear Boltzmann equation without cutoff , 1984 .

[19]  Lingbing He,et al.  Smoothing Estimates for Boltzmann Equation with Full-Range Interactions: Spatially Homogeneous Case , 2011 .

[20]  Yoshinori Morimoto,et al.  REGULARITY OF SOLUTIONS TO THE SPATIALLY HOMOGENEOUS BOLTZMANN EQUATION WITHOUT ANGULAR CUTOFF , 2009 .

[21]  Yan Guo,et al.  The Boltzmann equation in the whole space , 2004 .

[22]  L. Desvillettes Boltzmann ’ s kernel and the spatially homogeneous Boltzmann equation , 2022 .