Adaptive target detection with a polarization-sensitive optical system.

We developed an adaptive polarimetric target detector (APTD) to determine the optimum combination strategy for a multichannel polarization-sensitive optical system. The proposed algorithm is based on scene-derived polarization properties of the target and background, and it seeks to find an optimum multichannel combination of linear polarizing filters that maximizes the signal-to-clutter ratio (SCR) in intensity and Stokes parameter images. The algorithm is validated by performing RX anomaly detection and a generalized likelihood ratio test on both synthetic and real imagery. The experimental results are analyzed through calculated SCR and receiver operating characteristic curves. Compared with several conventional operation methods, we find that better target detection performance is achieved with the APTD algorithm.

[1]  J Scott Tyo,et al.  Review of passive imaging polarimetry for remote sensing applications. , 2006, Applied optics.

[2]  Eustace L. Dereniak,et al.  Figures of merit for complete Stokes polarimeter optimization , 2000, SPIE Optics + Photonics.

[3]  Michael G. Gartley,et al.  Topological anomaly detection performance with multispectral polarimetric imagery , 2009, Defense + Commercial Sensing.

[4]  Terrance E. Boult,et al.  Constraining Object Features Using a Polarization Reflectance Model , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  F. Goudail,et al.  Target detection with a liquid-crystal-based passive Stokes polarimeter. , 2004, Applied optics.

[6]  J S Tyo,et al.  Target detection in optically scattering media by polarization-difference imaging. , 1996, Applied optics.

[7]  A. Ambirajan,et al.  Optimum Angles for a Polarimeter: Part II , 1995 .

[8]  Xiaoli Yu,et al.  Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution , 1990, IEEE Trans. Acoust. Speech Signal Process..

[9]  Lawrence B. Wolff,et al.  Polarization-Based Material Classification from Specular Reflection , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Glenn Healey,et al.  Radiometric CCD camera calibration and noise estimation , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  François Goudail,et al.  Comparison of maximal achievable contrast in scalar, Stokes, and Mueller images. , 2010, Optics letters.

[12]  P. Roberts,et al.  Backscattering target detection in a turbid medium by polarization discrimination. , 1999, Applied optics.

[13]  J. Schott Fundamentals of Polarimetric Remote Sensing , 2009 .

[14]  Antonello De Martino,et al.  Adapted polarization state contrast image. , 2009, Optics express.

[15]  G. S. Phipps,et al.  Optimization of retardance for a complete Stokes polarimeter. , 2000, Optics letters.

[16]  François Goudail,et al.  Optimization of the contrast in active Stokes images. , 2009, Optics letters.

[17]  E. J. Kelly An Adaptive Detection Algorithm , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[18]  Andreas G. Andreou,et al.  Liquid crystal polarization camera , 1997, IEEE Trans. Robotics Autom..

[19]  Edward N Pugh,et al.  Adaptive algorithms for two-channel polarization sensing under various polarization statistics with nonuniform distributions. , 2006, Applied optics.

[20]  R. James,et al.  Polarimetric Remote Sensing in the Visible to Near Infrared , 2005 .

[21]  John R. Schott,et al.  Remote Sensing: The Image Chain Approach , 1996 .

[22]  Alan P. Schaum,et al.  Spectral subspace matched filtering , 2001, SPIE Defense + Commercial Sensing.

[23]  L. B. Wolff Polarization camera for computer vision with a beam splitter , 1994 .

[24]  J. Tyo Design of optimal polarimeters: maximization of signal-to-noise ratio and minimization of systematic error. , 2002, Applied optics.

[25]  J. S. Tyo,et al.  Optimum linear combination strategy for an N-channel polarization-sensitive imaging or vision system , 1998 .

[26]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.