From Constructivism to Computer Science

My field is mathematical logic, with a special interest in constructivism, and I would not dare to call myself a computer scientist. But some computer scientists regard my work as a contribution to their field; and in this text I shall try to explain how this is possible, by taking a look at the history of ideas. I want to describe how two interrelated ideas, connected with the constructivistic trend in the foundations of mathematics, developed within mathematical logic and ultimately diffused into computer science. It will be seen that this development has not been a quite straightforward one. In the history of ideas it often looks as if a certain idea has to be discovered several times, by different people, before it really enters into the consciousness of science.

[1]  John W. Dawson,et al.  Ergebnisse eines Mathematischen Kolloquiums , 1998 .

[2]  Rp Rob Nederpelt,et al.  Selected papers on Automath , 1994 .

[3]  D. van Dalen,et al.  A SMALL COMPLETE CATEGORY , 1988 .

[4]  L. M.-T. Grundzüge der theoretischen Logik , 1929, Nature.

[5]  Jeffery I. Zucker Formalization of Classical Mathematics in Automath , 1994 .

[6]  H. Läuchli An Abstract Notion of Realizability for Which Intuitionistic Predicate Calculus is Complete , 1970 .

[7]  A. S. Troelstra,et al.  Notes on intuitionistic second order arithmetic , 1973 .

[8]  T. Coquand Une théorie des constructions , 1985 .

[9]  A. R. D. Mathias,et al.  Cambridge Summer School in Mathematical Logic , 1973 .

[10]  Bengt Nordström,et al.  Programming in Martin-Löf's Type Theory , 1990 .

[11]  S. Kleene Realizability: A retrospective survey , 1973 .

[12]  Per Martin-Löf,et al.  Constructive mathematics and computer programming , 1984 .

[13]  Patrick Suppes,et al.  Logic, Methodology and Philosophy of Science , 1963 .

[14]  A. Troelstra,et al.  Formal systems for some branches of intuitionistic analysis , 1970 .

[15]  Eugenio Moggi,et al.  Constructive Natural Deduction and its 'Omega-Set' Interpretation , 1991, Math. Struct. Comput. Sci..

[16]  John C. Reynolds,et al.  Towards a theory of type structure , 1974, Symposium on Programming.

[17]  Paul Bernays,et al.  Abhandlungen zur Philosophie der Mathematik , 1977 .

[18]  P. Bernays,et al.  Grundlagen der Mathematik , 1934 .

[19]  Georg Kreisel,et al.  Foundations of Intuitionistic Logic , 1962 .

[20]  Walter Felscher Lectures on mathematical logic , 2000 .

[21]  A. Heyting Mathematische Grundlagenforschung : Intuitionismus, Beweistheorie , 1935 .

[22]  A. Troelstra Metamathematical investigation of intuitionistic arithmetic and analysis , 1973 .

[23]  Bengt Nordström,et al.  Programming in Martin-Lo¨f's type theory: an introduction , 1990 .

[24]  Ulrich Berger,et al.  Program Extraction from Classical Proofs , 1994, LCC.

[25]  Andrew M. Pitts,et al.  Polymorphism is Set Theoretic, Constructively , 1987, Category Theory and Computer Science.

[26]  Thierry Coquand,et al.  The Calculus of Constructions , 1988, Inf. Comput..

[27]  John C. Reynolds,et al.  Polymorphism is not Set-Theoretic , 1984, Semantics of Data Types.

[28]  W. Tait Infinitely Long Terms of Transfinite Type , 1965 .

[29]  Furio Honsell,et al.  A framework for defining logics , 1993, JACM.

[30]  A. Heyting Die intuitionistische Grundlegung der Mathematik , 1931 .

[31]  William A. Howard,et al.  The formulae-as-types notion of construction , 1969 .

[32]  J. Roger Hindley,et al.  To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism , 1980 .

[33]  Rance Cleaveland,et al.  Implementing mathematics with the Nuprl proof development system , 1986 .

[34]  Zhaohui Luo,et al.  ECC, an extended calculus of constructions , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[35]  A. Kolmogoroff Zur Deutung der intuitionistischen Logik , 1932 .

[36]  Andrew M. Pitts Non-trivial Power Types Can't Be Subtypes of Polymorphic Types , 1989, LICS.

[37]  Stephen Cole Kleene,et al.  On the interpretation of intuitionistic number theory , 1945, Journal of Symbolic Logic.

[38]  Haskell B. Curry,et al.  The combinatory foundations of mathematical logic , 1942, Journal of Symbolic Logic.

[39]  P. Martin-Löf Constructive mathematics and computer programming , 1984 .

[40]  Akiko Kino,et al.  Intuitionism and Proof Theory , 1970 .

[41]  H. Hornich,et al.  Mathematische Grundlagenforschung, Intuitionismus, Beweistheorie , 1936 .

[42]  Haskell B. Curry,et al.  Foundations of Mathematical Logic , 1964 .

[43]  Paul Bernays,et al.  Grundlagen der Mathematik. Band I , 1939 .

[44]  John Myhill,et al.  FORMAL SYSTEMS OF INTUITIONISTIC ANALYSIS, I, , 1968 .

[45]  Klibansky Philosophy in the Mid-Century a Survey , 1958 .

[46]  Jean-Baptiste Lully,et al.  The collected works , 1996 .

[47]  Mariangiola Dezani-Ciancaglini,et al.  A filter lambda model and the completeness of type assignment , 1983, Journal of Symbolic Logic.

[48]  W. Ackermann,et al.  Grundzuge der Theoretischen Logik , 1928 .

[49]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[50]  P. Martin-Löf An Intuitionistic Theory of Types: Predicative Part , 1975 .

[51]  J. Hyland The Effective Topos , 1982 .

[52]  de Ng Dick Bruijn,et al.  The mathematical language AUTOMATH, its usage, and some of its extensions , 1970 .

[53]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[54]  Joseph R. Shoenfield,et al.  Mathematical logic , 1967 .