Sand Piles Models of Signed Partitions with Piles

Let be nonnegative integers. In this paper we study the basic properties of a discrete dynamical model of signed integer partitions that we denote by . A generic element of this model is a signed integer partition with exactly all distinct nonzero parts, whose maximum positive summand is not exceeding and whose minimum negative summand is not less than . In particular, we determine the covering relations, the rank function, and the parallel convergence time from the bottom to the top of by using an abstract Sand Piles Model with three evolution rules. The lattice was introduced by the first two authors in order to study some combinatorial extremal sum problems.

[1]  Eric Goles Sand pile automata , 1992 .

[2]  Matthieu Latapy,et al.  Integer Partitions, Tilings of 2D-gons and Lattices , 2002, RAIRO Theor. Informatics Appl..

[3]  Joel H. Spencer,et al.  Balancing vectors in the max norm , 1986, Comb..

[4]  Eric Goles Ch.,et al.  Lattice Structure and Convergence of a Game of Cards , 2000, ArXiv.

[5]  Deepak Dhar The Abelian sandpile and related models , 1999 .

[6]  Eric Goles Ch.,et al.  Sandpile models and lattices: a comprehensive survey , 2004, Theor. Comput. Sci..

[7]  Thomas Brylawski,et al.  The lattice of integer partitions , 1973, Discret. Math..

[8]  Matthieu Latapy,et al.  The lattice of integer partitions and its infinite extension , 2009, Discret. Math..

[9]  Giampiero Chiaselotti,et al.  A Class of lattices and boolean functions related to a Manickam-Mikl\ , 2010, 1004.1724.

[10]  Matthieu Latapy,et al.  The lattice structure of chip firing games and related models , 2000 .

[11]  Eric Goles Ch.,et al.  Sandpiles and order structure of integer partitions , 2002, Discret. Appl. Math..

[12]  Eric Goles Ch.,et al.  Games on Line Graphs and Sand Piles , 1993, Theor. Comput. Sci..

[13]  Eric Goles Ch.,et al.  Universality of the Chip-Firing Game , 1997, Theor. Comput. Sci..

[14]  Khaled Al-Agha,et al.  The Involutory Dimension of Involution Posets , 2001, Order.

[15]  Giampiero Chiaselotti On a Problem Concerning the Weight Functions , 2002, Eur. J. Comb..

[16]  Enrico Formenti,et al.  From sandpiles to sand automata , 2007, Theor. Comput. Sci..

[17]  George E. Andrews Euler’s “De Partitio Numerorum” , 2007 .

[18]  Enrico Formenti,et al.  On Symmetric Sandpiles , 2006, ACRI.

[19]  Giuseppe Marino,et al.  New results related to a conjecture of Manickam and Singhi , 2008, Eur. J. Comb..

[20]  Konrad Engel,et al.  Solution of a problem on non-negative subset sums , 2012, Eur. J. Comb..

[21]  Enrico Formenti,et al.  Advances in Symmetric Sandpiles , 2007, Fundam. Informaticae.

[22]  William J. Keith,et al.  A Bijective Toolkit for Signed Partitions , 2011 .

[23]  Thi Ha Duong Phan,et al.  On the stability of Sand Piles Model , 2010, Theor. Comput. Sci..

[24]  P. Bak,et al.  Self-organized criticality. , 1988, Physical review. A, General physics.

[25]  Thi Ha Duong Phan,et al.  Strict partitions and discrete dynamical systems , 2007, Theor. Comput. Sci..

[26]  Matthieu Latapy,et al.  Partitions of an Integer into Powers , 2021, DM-CCG.

[27]  Matthieu Latapy,et al.  Structure of some sand piles model , 2000, Theor. Comput. Sci..

[28]  Giuseppe Marino,et al.  A Method to Count the Positive 3-Subsets in a Set of Real Numbers with Non-Negative Sum , 2002, Eur. J. Comb..

[29]  Richard P. Stanley,et al.  Weyl Groups, the Hard Lefschetz Theorem, and the Sperner Property , 1980, SIAM J. Algebraic Discret. Methods.