Stable solution of the Logarithmic Minkowski problem in the case of hyperplane symmetries

Abstract In the case of symmetries with respect to a Coxeter group G ⊂ O ( n ) acting without non-zero fixed points on R n , the stability of the solution of the Logarithmic Minkowski problem on S n − 1 is established.

[1]  A letter: The log-Brunn-Minkowski inequality for complex bodies , 2014, 1412.5321.

[2]  F. Barthe,et al.  The volume product of convex bodies with many hyperplane symmetries , 2013 .

[4]  E. Lutwak,et al.  Lp dual curvature measures , 2018 .

[5]  The cone volume measure of antipodal points , 2014, 1410.1066.

[7]  L. Nirenberg The Weyl and Minkowski problems in differential geometry in the large , 1953 .

[8]  Volume inequalities for isotropic measures , 2006, math/0607753.

[9]  M. Henk,et al.  Cone-volume measures of polytopes , 2013, 1305.5335.

[10]  Assaf Naor,et al.  The Surface Measure and Cone Measure on the sphere of ` np , 2004 .

[11]  A. Schuermann,et al.  Ehrhart polynomials and successive minima , 2005, math/0507528.

[12]  S. Mendelson,et al.  A probabilistic approach to the geometry of the ℓᵨⁿ-ball , 2005, math/0503650.

[13]  N. Trudinger,et al.  The Monge-Ampµere equation and its geometric applications , 2008 .

[14]  Infinitely Many Solutions for Centro-affine Minkowski Problem , 2019 .

[15]  Shibing Chen,et al.  The L-Brunn-Minkowski inequality for p < 1 , 2020 .

[16]  Mohammad N. Ivaki,et al.  A unified flow approach to smooth, even Lp-Minkowski problems , 2016, Analysis & PDE.

[17]  Daniel Hug,et al.  On the Lp Minkowski Problem for Polytopes , 2005, Discret. Comput. Geom..

[18]  G. Leng,et al.  Dar’s conjecture and the log–Brunn–Minkowski inequality , 2016 .

[19]  Christos Saroglou Remarks on the conjectured log-Brunn–Minkowski inequality , 2013, 1311.4954.

[20]  A. Stancu On the number of solutions to the discrete two-dimensional L0-Minkowski problem , 2003 .

[21]  A. Pogorelov The Minkowski multidimensional problem , 1978 .

[22]  Erwin Lutwak,et al.  The Brunn–Minkowski–Firey Theory II: Affine and Geominimal Surface Areas , 1996 .

[23]  Keith Ball,et al.  Volume Ratios and a Reverse Isoperimetric Inequality , 1989, math/9201205.

[24]  Ge Xiong Extremum problems for the cone volume functional of convex polytopes , 2010 .

[25]  L. Caffarelli Interior $W^{2,p}$ estimates for solutions of the Monge-Ampère equation , 1990 .

[26]  Kai-Seng Chou,et al.  The Lp-Minkowski problem and the Minkowski problem in centroaffine geometry , 2006 .

[27]  T. Tkocz,et al.  On a convexity property of sections of the cross-polytope , 2018, Proceedings of the American Mathematical Society.

[28]  G. Paouris,et al.  Relative entropy of cone measures and Lp centroid bodies , 2009, 0909.4361.

[29]  M. Henk,et al.  Cone-volume measure and stability , 2014, 1407.7272.

[30]  B. Andrews,et al.  Flow by the power of the Gauss curvature , 2015, 1510.00655.

[31]  H. Rauch On Differential Geometry in the Large. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[32]  G. Bianchi,et al.  The L-Minkowski problem for −n < p < 1 , 2017, Advances in Mathematics.

[33]  Shibing Chen,et al.  The logarithmic Minkowski problem for non-symmetric measures , 2018, Transactions of the American Mathematical Society.

[34]  Lu Xu,et al.  On the uniqueness of Lp-Minkowski problems: The constant p-curvature case in R3 , 2015, 1503.02358.

[35]  Kolesnikov Alexander,et al.  Local Lp-Brunn-Minkowski inequalities for p<1 , 2017 .

[36]  Erwin Lutwak,et al.  The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem , 1993 .

[37]  Apratim De,et al.  Stability of the log-Brunn-Minkowski inequality in the case of many hyperplane symmetries , 2021 .

[38]  Huaiyu Jian,et al.  Nonuniqueness of solutions to the L-p-Minkowski problem , 2015 .

[39]  F. Barthe Inégalités fonctionnelles et géométriques obtenues par transport des mesures , 1997 .

[40]  K. Böröczky,et al.  Cone-volume measure of general centered convex bodies , 2016 .

[41]  Jiakun Liu,et al.  Non-uniqueness of solutions to the dual $L_p$-Minkowski problem , 2019, 1910.06879.

[42]  B. Andrews Gauss curvature flow: the fate of the rolling stones , 1999 .

[43]  Jian Lu,et al.  Nonuniqueness of Solutions to the Lp Dual Minkowski Problem , 2021, International Mathematics Research Notices.

[44]  Dudley,et al.  Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .

[45]  A. Kolesnikov,et al.  On the $$L_p$$-Brunn–Minkowski and Dimensional Brunn–Minkowski Conjectures for Log-Concave Measures , 2020, The Journal of Geometric Analysis.

[46]  Emanuel Milman A sharp centro-affine isospectral inequality of Szeg\"{o}--Weinberger type and the $L^p$-Minkowski problem , 2021 .

[47]  H. Lewy,et al.  On differential geometry in the large. I. Minkowski’s problem , 1938 .

[48]  K. Böröczky,et al.  The logarithmic Minkowski problem , 2012 .

[49]  K. Böröczky,et al.  The log-Brunn-Minkowski inequality , 2012 .

[50]  Binwu He,et al.  Projection problems for symmetric polytopes , 2006 .

[51]  M. Gromov,et al.  Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces , 1987 .

[52]  F. Barthe,et al.  Invariances in variance estimates , 2011, 1106.5985.

[53]  Deforming a Convex Hypersurface with Low Entropy by Its Gauss Curvature , 2015, 1512.03400.

[54]  Necdet Batir,et al.  Inequalities for the gamma function , 2008 .

[55]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[56]  A. Kolesnikov Mass Transportation Functionals on the Sphere with Applications to the Logarithmic Minkowski Problem , 2018, Moscow Mathematical Journal.

[57]  L. Gordon,et al.  The Gamma Function , 1994, Series and Products in the Development of Mathematics.

[58]  Xu-jia Wang,et al.  Flow by Gauss curvature to the Aleksandrov and dual Minkowski problems , 2017, Journal of the European Mathematical Society.

[59]  Necdet Batır Bounds for the Gamma Function , 2017, 1705.06167.

[60]  A. Stancu The Discrete Planar L0-Minkowski Problem , 2002 .

[61]  Lei Ni,et al.  Entropy and a convergence theorem for Gauss curvature flow in high dimension , 2013, 1306.0625.

[62]  B. Andrews,et al.  Flow by powers of the Gauss curvature , 2016 .

[63]  S. Yau,et al.  On the regularity of the solution of the n‐dimensional Minkowski problem , 1976 .

[64]  A. Naor The surface measure and cone measure on the sphere of $\ell_p^n$ , 2006 .

[65]  Xu-jia Wang,et al.  Multiple solutions of the $$L_{p}$$Lp-Minkowski problem , 2016 .

[66]  William J. Firey,et al.  Shapes of worn stones , 1974 .

[67]  E. Lutwak Selected Affine Isoperimetric Inequalities , 1993 .