Work and information processing in a solvable model of Maxwell’s demon

We describe a minimal model of an autonomous Maxwell demon, a device that delivers work by rectifying thermal fluctuations while simultaneously writing information to a memory register. We solve exactly for the steady-state behavior of our model, and we construct its phase diagram. We find that our device can also act as a “Landauer eraser”, using externally supplied work to remove information from the memory register. By exposing an explicit, transparent mechanism of operation, our model offers a simple paradigm for investigating the thermodynamics of information processing by small systems.

[1]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[2]  D. Andrieux,et al.  Nonequilibrium generation of information in copolymerization processes , 2008, Proceedings of the National Academy of Sciences.

[3]  John D. Norton,et al.  Exorcist XIV: The Wrath of Maxwell’s Demon. Part I. From Maxwell to Szilard , 1998 .

[4]  Suriyanarayanan Vaikuntanathan,et al.  Nonequilibrium detailed fluctuation theorem for repeated discrete feedback. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Kirk T. McDonald,et al.  Maxwell ’ s Demon , 2008 .

[6]  Koji Maruyama,et al.  Maxwell's demon and data compression. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Masahito Ueda,et al.  Generalized Jarzynski equality under nonequilibrium feedback control. , 2009, Physical review letters.

[8]  L. Szilard über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen , 1929 .

[9]  R. Feynman,et al.  The Feynman Lectures on Physics Addison-Wesley Reading , 1963 .

[10]  W. H. Zurek,et al.  Thermodynamic cost of computation, algorithmic complexity and the information metric , 1989, Nature.

[11]  Jordan M. Horowitz,et al.  Thermodynamic reversibility in feedback processes , 2011, 1104.0332.

[12]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[13]  Holger Kantz,et al.  Thermodynamic cost of measurements. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Masahito Ueda,et al.  Minimal energy cost for thermodynamic information processing: measurement and information erasure. , 2008, Physical review letters.

[15]  Hong Qian,et al.  Fluctuation theorems for a molecular refrigerator. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Masahito Ueda,et al.  Second law of thermodynamics with discrete quantum feedback control. , 2007, Physical review letters.

[17]  Modeling Maxwell's demon with a microcanonical Szilard engine. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[19]  Franco Nori,et al.  Colloquium: The physics of Maxwell's demon and information , 2007, 0707.3400.

[20]  J. Bub Maxwell's Demon and the Thermodynamics of Computation , 2001 .

[21]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[22]  John D. Norton,et al.  Exorcist XIV: The wrath of maxwell’s demon. Part II. from szilard to Landauer and beyond , 1999 .

[23]  Demons, entropy and the quest for absolute zero. , 2011, Scientific American.

[24]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[25]  C. P. Sun,et al.  Maxwell's demon assisted thermodynamic cycle in superconducting quantum circuits. , 2005, Physical review letters.

[26]  E. Lutz,et al.  Experimental verification of Landauer’s principle linking information and thermodynamics , 2012, Nature.

[27]  J. Gawroński Amsterdam , 2008, Water in Times of Climate Change.

[28]  R. Landauer,et al.  The Fundamental Physical Limits of Computation. , 1985 .

[29]  O. Penrose Foundations of Statistical Mechanics: A Deductive Treatment , 2005 .

[30]  M. Smoluchowski,et al.  Experimentell nachweisbare, der üblichen Thermodynamik widersprechende Molekularphänomene , 1927 .

[31]  M. Sano,et al.  Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality , 2010 .

[32]  M. Hemmo,et al.  Maxwell's Demon , 2010 .

[33]  H. Touchette,et al.  Information and flux in a feedback controlled Brownian ratchet , 2009 .

[34]  John D. Norton Waiting for Landauer , 2010 .

[35]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[36]  M. Ponmurugan Generalized detailed fluctuation theorem under nonequilibrium feedback control. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Johan Aberg,et al.  The thermodynamic meaning of negative entropy , 2011, Nature.

[38]  L. Szilard On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings. , 1964, Behavioral science.

[39]  U. Seifert,et al.  Extracting work from a single heat bath through feedback , 2011, 1102.3826.

[40]  沙川 貴大,et al.  Thermodynamics of information processing in small systems , 2011 .

[41]  J. Bokor,et al.  Exploring the thermodynamic limits of computation in integrated systems: magnetic memory, nanomagnetic logic, and the Landauer limit. , 2011, Physical review letters.

[42]  J. Schnakenberg Network theory of microscopic and macroscopic behavior of master equation systems , 1976 .

[43]  L. Brillouin Maxwell's Demon Cannot Operate: Information and Entropy. I , 1951 .