Mapping erosion‐sensitive areas after wildfires using fieldwork, remote sensing, and geographic information systems techniques on a regional scale
暂无分享,去创建一个
Fernando Pérez-Cabello | Alberto García-Martín | F. Pérez-Cabello | A. García-Martín | R. M. Llovería | J. Fernández | J. de la Riva Fernández | R. Montorio Llovería
[1] C. L. Wiegand,et al. Diurnal patterns of bidirectional vegetation indices for wheat canopies , 1986 .
[2] Gerardo Bocco,et al. Gully erosion: processes and models , 1991 .
[3] L. Lane,et al. A GIS‐based hillslope erosion and sediment delivery model and its application in the Cerro Grande burn area , 2001 .
[4] J. Franklin,et al. Mapping Wildfire Burn Severity in Southern California Forests and Shrublands Using Enhanced Thematic Mapper Imagery , 2001 .
[5] Z. Naveh. FIRE IN THE MEDITERRANEAN - A LANDSCAPE ECOLOGICAL PERSPECTIVE. , 1990 .
[6] S. Menard. Applied Logistic Regression Analysis , 1996 .
[7] J. Moody,et al. Post‐fire, rainfall intensity–peak discharge relations for three mountainous watersheds in the western USA , 2001 .
[8] Jorge Marquínez,et al. A susceptibility model for post wildfire soil erosion in a temperate oceanic mountain area of Spain , 2005 .
[9] John C. Davis,et al. Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA , 2003 .
[10] D. Verbyla,et al. Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM , 2005 .
[11] Daniel G. Neary,et al. Fire effects on belowground sustainability: a review and synthesis , 1999 .
[12] Nicolas Baghdadi,et al. Remote-sensing data as an alternative input for the ‘STREAM’ runoff model , 2005 .
[13] E. Kasischke,et al. Locating and estimating the areal extent of wildfires in alaskan boreal forests using multiple-season AVHRR NDVI composite data , 1995 .
[14] Xavier Pons,et al. Spatial patterns of forest fires in Catalonia (NE of Spain) along the period 1975–1995: Analysis of vegetation recovery after fire , 2001 .
[15] P. Mausel,et al. Assessment of vegetation change in a fire-altered forest landscape. , 1990 .
[16] J. A. Casasnovas,et al. Estado de conservación de los suelos de la cuenca del embalse de Joaquín Costa , 1998 .
[17] S. R. Martínez,et al. Bioclimatology of the Iberian Peninsula , 1999 .
[18] Oriol de Bolós,et al. Fitosociología: bases para el estudio de las comunidades vegetales , 1979 .
[19] L. Ayalew,et al. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan , 2005 .
[20] S. Wood,et al. Fire, storms, and erosional events in the Idaho batholith , 2001 .
[21] S. M. de Jong,et al. Regional assessment of soil erosion using the distributed model SEMMED and remotely sensed data , 1999 .
[22] Thomas May. Observaciones y reflexiones sobre el comportamiento tras fuego de algunas especies de la zona mediterránea de Andalucía Oriental , 1991 .
[23] C. Justice,et al. Analysis of the dynamics of African vegetation using the normalized difference vegetation index , 1986 .
[24] C. Woodcock,et al. An assessment of several linear change detection techniques for mapping forest mortality using multitemporal landsat TM data , 1996 .
[25] Paul Maus,et al. A primer on mapping vegetation using remote sensing , 2001 .
[26] Artemi Cerdà,et al. Influence of vegetation recovery on soil hydrology and erodibility following fire: an 11-year investigation , 2005 .
[27] J. W. Wagtendonk,et al. Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity , 2004 .
[28] Xavier Pons,et al. A simple radiometric correction model to improve automatic mapping of vegetation from multispectral satellite data , 1994 .
[29] S. Cannon,et al. A process for fire‐related debris flow initiation, Cerro Grande fire, New Mexico , 2001 .
[30] E. LeDrew,et al. Application of principal components analysis to change detection , 1987 .
[31] S. Wells,et al. Fire-Related Sedimentation Events on Alluvial Fans, Yellowstone National Park, U.S.A. , 1997 .
[32] Jorge Mataix-Solera,et al. Hydrophobicity and aggregate stability in calcareous topsoils from fire-affected pine forests in southeastern Spain , 2004 .
[33] Peter C. Beeson,et al. Simulating overland flow following wildfire: mapping vulnerability to landscape disturbance , 2001 .
[34] Richard Aspinall,et al. Use of logistic regression for validation of maps of the spatial distribution of vegetation species derived from high spatial resolution hyperspectral remotely sensed data , 2002 .
[35] Russell G. Congalton,et al. Assessing the accuracy of remotely sensed data : principles and practices , 1998 .
[36] Jay D. Miller,et al. Mapping forest post-fire canopy consumption in several overstory types using multi-temporal Landsat TM and ETM data , 2002 .
[37] Florian Siegert,et al. The 1998 Forest Fires in East Kalimantan (Indonesia): A Quantitative Evaluation Using High Resolution, Multitemporal ERS-2 SAR Images and NOAA-AVHRR Hotspot Data , 2000 .
[38] Z. Naveh,et al. 12 – Effects of Fire in the Mediterranean Region , 1974 .
[39] C. F. Lee,et al. Landslide characteristics and, slope instability modeling using GIS, Lantau Island, Hong Kong , 2002 .
[40] Jon E. Keeley,et al. Resilience of mediterranean shrub communities to fires , 1986 .
[41] Artemi Cerdà,et al. Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland , 1998 .
[42] F. Lloret,et al. Influence of fire severity on plant regeneration by means of remote sensing imagery , 2003 .
[43] Compton J. Tucker,et al. Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel - 1980-1984 , 1985 .
[44] Alfonso Calera,et al. Application of remote sensing and GIS to locate priority intervention areas after wildland fires in Mediterranean systems: a case study from south-eastern Spain , 2004 .
[45] P. Chavez. Image-Based Atmospheric Corrections - Revisited and Improved , 1996 .
[46] Ted L. Hanes. Succession after Fire in the Chaparral of Southern California , 1971 .
[47] R. Cerrillo,et al. Aplicación de escenas Landsat a la asignación de grados de afectación producidos por incendios forestales , 2002 .
[48] Stephen R. Yool,et al. Mapping Fire-Induced Vegetation Mortality Using Landsat Thematic Mapper Data: A Comparison of Linear Transformation Techniques , 1998 .
[49] P. Robichaud,et al. A comparison of surface runoff and sediment yields from low- and high-severity site preparation burns , 1994 .
[50] Christian Papió. Respuesta al fuego de las principales especies de la vegetacion de Garraf (Barcelona) , 1988 .
[51] Robert H. Fraser,et al. A method for detecting large-scale forest cover change using coarse spatial resolution imagery , 2005 .
[52] J. D. Helvey. EFFECTS OF A NORTH CENTRAL WASHINGTON WILDFIRE ON RUNOFF AND SEDIMENT PRODUCTION , 1980 .
[53] Eric P. Crist,et al. A Physically-Based Transformation of Thematic Mapper Data---The TM Tasseled Cap , 1984, IEEE Transactions on Geoscience and Remote Sensing.
[54] O. Viedma,et al. Modeling rates of ecosystem recovery after fires by using landsat TM data , 1997 .
[55] R. Minnich. Fire Mosaics in Southern California and Northern Baja California , 1983, Science.
[56] J. G. King,et al. Postfire erosional processes in the Pacific Northwest and Rocky Mountain regions , 2003 .
[57] F. Maselli,et al. Forest classification by principal component analyses of TM data , 1988 .