Exact Hamiltonian Monte Carlo for Truncated Multivariate Gaussians

We present a Hamiltonian Monte Carlo algorithm to sample from multivariate Gaussian distributions in which the target space is constrained by linear and quadratic inequalities or products thereof. The Hamiltonian equations of motion can be integrated exactly and there are no parameters to tune. The algorithm mixes faster and is more efficient than Gibbs sampling. The runtime depends on the number and shape of the constraints but the algorithm is highly parallelizable. In many cases, we can exploit special structure in the covariance matrices of the untruncated Gaussian to further speed up the runtime. A simple extension of the algorithm permits sampling from distributions whose log-density is piecewise quadratic, as in the “Bayesian Lasso” model.

[1]  H. Jeffreys An invariant form for the prior probability in estimation problems , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  J. Hammersley,et al.  A new Monte Carlo technique: antithetic variates , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  J. Tobin Estimation of Relationships for Limited Dependent Variables , 1958 .

[4]  J. Ashford,et al.  Multi-variate probit analysis. , 1970, Biometrics.

[5]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[6]  S. Duane,et al.  Hybrid Monte Carlo , 1987 .

[7]  A. Kennedy The theory of hybrid stochastic algorithms , 1990 .

[8]  M. Piedmonte,et al.  A Method for Generating High-Dimensional Multivariate Binary Variates , 1991 .

[9]  Adrian F. M. Smith,et al.  Bayesian Analysis of Constrained Parameter and Truncated Data Problems , 1991 .

[10]  John Geweke,et al.  Efficient Simulation from the Multivariate Normal and Student-t Distributions Subject to Linear Constraints and the Evaluation of Constraint Probabilities , 1991 .

[11]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[12]  B. Silverman,et al.  Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .

[13]  A. D. Kennedy,et al.  An exact local hybrid Monte Carlo algorithm for gauge theories , 1994 .

[14]  J. Geweke,et al.  Alternative computational approaches to inference in the multinomial probit model , 1994 .

[15]  B. Silverman,et al.  Nonparametric regression and generalized linear models , 1994 .

[16]  B. Silverman,et al.  Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .

[17]  Don Herbison-Evans,et al.  Solving Quartics and Cubics for Graphics , 1995 .

[18]  C. Robert Simulation of truncated normal variables , 2009, 0907.4010.

[19]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[20]  Robert Tibshirani,et al.  Monotone Shrinkage of Trees , 1998 .

[21]  Petar M. Djuric,et al.  Gibbs sampling approach for generation of truncated multivariate Gaussian random variables , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[22]  S. Walker,et al.  Sampling Truncated Normal, Beta, and Gamma Densities , 2001 .

[23]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[24]  B D. R. COX On some models for multivariate binary variables parallel in complexity with the multivariate Gaussian distribution , 2002 .

[25]  A. P. Dawid,et al.  Gaussian Processes to Speed up Hybrid Monte Carlo for Expensive Bayesian Integrals , 2003 .

[26]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[27]  Richard A. Davis,et al.  Efficient Gibbs Sampling of Truncated Multivariate Normal with Application to Constrained Linear Regression , 2004 .

[28]  Eero P. Simoncelli,et al.  Maximum Likelihood Estimation of a Stochastic Integrate-and-Fire Neural Encoding Model , 2004, Neural Computation.

[29]  Brian Neelon,et al.  Bayesian Isotonic Regression and Trend Analysis , 2004, Biometrics.

[30]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[31]  Scott S. Hampton,et al.  Shadow hybrid Monte Carlo: an efficient propagator in phase space of macromolecules , 2004 .

[32]  R. Maitra,et al.  Multivariate Gaussian Simulation Outside Arbitrary Ellipsoids , 2007 .

[33]  G. Casella,et al.  The Bayesian Lasso , 2008 .

[34]  Chris Hans Bayesian lasso regression , 2009 .

[35]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[36]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[37]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[38]  Marcus N. Bannerman,et al.  DynamO: a free ${\cal O}$(N) general event‐driven molecular dynamics simulator , 2010, Journal of computational chemistry.

[39]  James G. Scott,et al.  The Bayesian bridge , 2011, 1109.2279.

[40]  R. Tibshirani,et al.  A LASSO FOR HIERARCHICAL INTERACTIONS. , 2012, Annals of statistics.

[41]  Maurizio Dapor Monte Carlo Strategies , 2020, Transport of Energetic Electrons in Solids.

[42]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..