Isomorphism for random k-uniform hypergraphs

We study the isomorphism problem for random hypergraphs. We show that it is polynomially time solvable for the binomial random $k$-uniform hypergraph $H_{n,p;k}$, for a wide range of $p$. We also show that it is solvable w.h.p. for random $r$-regular, $k$-uniform hypergraphs $H_{n,r;k},r=O(1)$.

[1]  Alan M. Frieze,et al.  Perfect Matchings in Random r-regular, s-uniform Hypergraphs , 1996, Combinatorics, Probability and Computing.

[2]  A. Frieze,et al.  Introduction to Random Graphs , 2016 .

[3]  B. Bollobás Distinguishing Vertices of Random Graphs , 1982 .

[4]  Paul Erdös,et al.  On the chromatic index of almost all graphs , 1977, J. Comb. Theory, Ser. B.

[5]  Béla Bollobás,et al.  A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..

[6]  Paul Erdös,et al.  Random Graph Isomorphism , 1980, SIAM J. Comput..

[7]  Ludek Kucera,et al.  Canonical labeling of regular graphs in linear average time , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[8]  László Babai,et al.  Canonical labelling of graphs in linear average time , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[9]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[10]  Po-Shen Loh,et al.  Probabilistic Methods in Combinatorics , 2009 .

[11]  Gopal Pandurangan,et al.  Improved Random Graph Isomorphism Tomek Czajka , 2006 .

[12]  J. Spencer Probabilistic Methods in Combinatorics , 1974 .