Low-Rank Matrix Completion by Riemannian Optimization

The matrix completion problem consists of finding or approximating a low-rank matrix based on a few samples of this matrix. We propose a new algorithm for matrix completion that minimizes the least-square distance on the sampling set over the Riemannian manifold of fixed-rank matrices. The algorithm is an adaptation of classical nonlinear conjugate gradients, developed within the framework of retraction-based optimization on manifolds. We describe all the necessary objects from differential geometry necessary to perform optimization over this low-rank matrix manifold, seen as a submanifold embedded in the space of matrices. In particular, we describe how metric projection can be used as retraction and how vector transport lets us obtain the conjugate search directions. Finally, we prove convergence of a regularized version of our algorithm under the assumption that the restricted isometry property holds for incoherent matrices throughout the iterations. The numerical experiments indicate that our approach...

[1]  J. Davenport Editor , 1960 .

[2]  Jan Boman Differentiability of a Function and of its Compositions with Functions of One Variable. , 1967 .

[3]  M. Ziegler Volume 152 of Graduate Texts in Mathematics , 1995 .

[4]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[5]  U. Helmke,et al.  Optimization and Dynamical Systems , 1994, Proceedings of the IEEE.

[6]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[7]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[8]  Henry Wolkowicz,et al.  Solving Euclidean Distance Matrix Completion Problems Via Semidefinite Programming , 1999, Comput. Optim. Appl..

[9]  Luca Dieci,et al.  Smoothness and Periodicity of Some Matrix Decompositions , 2000, SIAM J. Matrix Anal. Appl..

[10]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[11]  R. Adler,et al.  Newton's method on Riemannian manifolds and a geometric model for the human spine , 2002 .

[12]  Renato D. C. Monteiro,et al.  A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization , 2003, Math. Program..

[13]  John B. Moore,et al.  A Newton-like method for solving rank constrained linear matrix inequalities , 2006, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[14]  Renato D. C. Monteiro,et al.  Digital Object Identifier (DOI) 10.1007/s10107-004-0564-1 , 2004 .

[15]  James Bennett,et al.  The Netflix Prize , 2007 .

[16]  Gene H. Golub,et al.  The differentiation of pseudo-inverses and non-linear least squares problems whose variables separate , 1972, Milestones in Matrix Computation.

[17]  Othmar Koch,et al.  Dynamical Low-Rank Approximation , 2007, SIAM J. Matrix Anal. Appl..

[18]  Pierre-Antoine Absil,et al.  Trust-Region Methods on Riemannian Manifolds , 2007, Found. Comput. Math..

[19]  Adrian S. Lewis,et al.  Identifying Active Manifolds , 2007, Algorithmic Oper. Res..

[20]  Adrian S. Lewis,et al.  Alternating Projections on Manifolds , 2008, Math. Oper. Res..

[21]  P. Absil,et al.  Iterative Methods for Low Rank Approximation of Graph Similarity Matrices , 2013, MLG 2009.

[22]  S. Yun,et al.  An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems , 2009 .

[23]  S. Yun,et al.  An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems , 2009 .

[24]  Andrea Montanari,et al.  Matrix Completion from Noisy Entries , 2009, J. Mach. Learn. Res..

[25]  Warren Hare,et al.  A proximal method for identifying active manifolds , 2009, Comput. Optim. Appl..

[26]  Levent Tunçel,et al.  Optimization algorithms on matrix manifolds , 2009, Math. Comput..

[27]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[28]  Daphna Weinshall,et al.  Online Learning in The Manifold of Low-Rank Matrices , 2010, NIPS.

[29]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[30]  Andrea Montanari,et al.  Matrix completion from a few entries , 2009, 2009 IEEE International Symposium on Information Theory.

[31]  Daniel Kressner,et al.  Krylov Subspace Methods for Linear Systems with Tensor Product Structure , 2010, SIAM J. Matrix Anal. Appl..

[32]  Olgica Milenkovic,et al.  SET: An algorithm for consistent matrix completion , 2009, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[33]  Inderjit S. Dhillon,et al.  Guaranteed Rank Minimization via Singular Value Projection , 2009, NIPS.

[34]  Yi Ma,et al.  The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices , 2010, Journal of structural biology.

[35]  Francis R. Bach,et al.  Low-Rank Optimization on the Cone of Positive Semidefinite Matrices , 2008, SIAM J. Optim..

[36]  Yoram Bresler,et al.  ADMiRA: Atomic Decomposition for Minimum Rank Approximation , 2009, IEEE Transactions on Information Theory.

[37]  Pierre-Antoine Absil,et al.  Riemannian BFGS Algorithm with Applications , 2010 .

[38]  Stefan Vandewalle,et al.  A Riemannian Optimization Approach for Computing Low-Rank Solutions of Lyapunov Equations , 2010, SIAM J. Matrix Anal. Appl..

[39]  Emmanuel J. Candès,et al.  The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.

[40]  Emmanuel J. Candès,et al.  Matrix Completion With Noise , 2009, Proceedings of the IEEE.

[41]  Robert D. Nowak,et al.  Online identification and tracking of subspaces from highly incomplete information , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[42]  Marie Michenkova Numerical algorithms for low-rank matrix completion problems , 2011 .

[43]  Stephen J. Wright,et al.  Identifying Activity , 2009, SIAM J. Optim..

[44]  Gilles Meyer Geometric optimization algorithms for linear regression on fixed-rank matrices , 2011 .

[45]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[46]  Shiqian Ma,et al.  Convergence of Fixed-Point Continuation Algorithms for Matrix Rank Minimization , 2009, Found. Comput. Math..

[47]  Shiqian Ma,et al.  Fixed point and Bregman iterative methods for matrix rank minimization , 2009, Math. Program..

[48]  Olgica Milenkovic,et al.  Subspace Evolution and Transfer (SET) for Low-Rank Matrix Completion , 2010, IEEE Transactions on Signal Processing.

[49]  David F. Gleich,et al.  Rank aggregation via nuclear norm minimization , 2011, KDD.

[50]  Pierre-Antoine Absil,et al.  RTRMC: A Riemannian trust-region method for low-rank matrix completion , 2011, NIPS.

[51]  Silvere Bonnabel,et al.  Linear Regression under Fixed-Rank Constraints: A Riemannian Approach , 2011, ICML.

[52]  Silvere Bonnabel,et al.  Regression on Fixed-Rank Positive Semidefinite Matrices: A Riemannian Approach , 2010, J. Mach. Learn. Res..

[53]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[54]  Yin Zhang,et al.  Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm , 2012, Mathematical Programming Computation.

[55]  Jérôme Malick,et al.  Projection-like Retractions on Matrix Manifolds , 2012, SIAM J. Optim..

[56]  H. Harbrecht,et al.  On the low-rank approximation by the pivoted Cholesky decomposition , 2012 .

[57]  Yong-Jin Liu,et al.  An implementable proximal point algorithmic framework for nuclear norm minimization , 2012, Math. Program..

[58]  Bart Vandereycken Low-Rank Matrix Completion by Riemannian Optimization , 2012, SIAM J. Optim..

[59]  Daphna Weinshall,et al.  Online Learning in the Embedded Manifold of Low-rank Matrices , 2012, J. Mach. Learn. Res..

[60]  G. Sapiro,et al.  A collaborative framework for 3D alignment and classification of heterogeneous subvolumes in cryo-electron tomography. , 2013, Journal of structural biology.

[61]  Bamdev Mishra,et al.  Low-Rank Optimization with Trace Norm Penalty , 2011, SIAM J. Optim..

[62]  S. Osher,et al.  Fast Singular Value Thresholding without Singular Value Decomposition , 2013 .

[63]  Steven Thomas Smith,et al.  Optimization Techniques on Riemannian Manifolds , 2014, ArXiv.

[64]  Bamdev Mishra,et al.  Fixed-rank matrix factorizations and Riemannian low-rank optimization , 2012, Comput. Stat..

[65]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .