Low-Rank Matrix Completion by Riemannian Optimization
暂无分享,去创建一个
[1] J. Davenport. Editor , 1960 .
[2] Jan Boman. Differentiability of a Function and of its Compositions with Functions of One Variable. , 1967 .
[3] M. Ziegler. Volume 152 of Graduate Texts in Mathematics , 1995 .
[4] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[5] U. Helmke,et al. Optimization and Dynamical Systems , 1994, Proceedings of the IEEE.
[6] Alan Edelman,et al. The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..
[7] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[8] Henry Wolkowicz,et al. Solving Euclidean Distance Matrix Completion Problems Via Semidefinite Programming , 1999, Comput. Optim. Appl..
[9] Luca Dieci,et al. Smoothness and Periodicity of Some Matrix Decompositions , 2000, SIAM J. Matrix Anal. Appl..
[10] John M. Lee. Introduction to Smooth Manifolds , 2002 .
[11] R. Adler,et al. Newton's method on Riemannian manifolds and a geometric model for the human spine , 2002 .
[12] Renato D. C. Monteiro,et al. A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization , 2003, Math. Program..
[13] John B. Moore,et al. A Newton-like method for solving rank constrained linear matrix inequalities , 2006, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).
[14] Renato D. C. Monteiro,et al. Digital Object Identifier (DOI) 10.1007/s10107-004-0564-1 , 2004 .
[15] James Bennett,et al. The Netflix Prize , 2007 .
[16] Gene H. Golub,et al. The differentiation of pseudo-inverses and non-linear least squares problems whose variables separate , 1972, Milestones in Matrix Computation.
[17] Othmar Koch,et al. Dynamical Low-Rank Approximation , 2007, SIAM J. Matrix Anal. Appl..
[18] Pierre-Antoine Absil,et al. Trust-Region Methods on Riemannian Manifolds , 2007, Found. Comput. Math..
[19] Adrian S. Lewis,et al. Identifying Active Manifolds , 2007, Algorithmic Oper. Res..
[20] Adrian S. Lewis,et al. Alternating Projections on Manifolds , 2008, Math. Oper. Res..
[21] P. Absil,et al. Iterative Methods for Low Rank Approximation of Graph Similarity Matrices , 2013, MLG 2009.
[22] S. Yun,et al. An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems , 2009 .
[23] S. Yun,et al. An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems , 2009 .
[24] Andrea Montanari,et al. Matrix Completion from Noisy Entries , 2009, J. Mach. Learn. Res..
[25] Warren Hare,et al. A proximal method for identifying active manifolds , 2009, Comput. Optim. Appl..
[26] Levent Tunçel,et al. Optimization algorithms on matrix manifolds , 2009, Math. Comput..
[27] Emmanuel J. Candès,et al. A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..
[28] Daphna Weinshall,et al. Online Learning in The Manifold of Low-Rank Matrices , 2010, NIPS.
[29] Pablo A. Parrilo,et al. Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..
[30] Andrea Montanari,et al. Matrix completion from a few entries , 2009, 2009 IEEE International Symposium on Information Theory.
[31] Daniel Kressner,et al. Krylov Subspace Methods for Linear Systems with Tensor Product Structure , 2010, SIAM J. Matrix Anal. Appl..
[32] Olgica Milenkovic,et al. SET: An algorithm for consistent matrix completion , 2009, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.
[33] Inderjit S. Dhillon,et al. Guaranteed Rank Minimization via Singular Value Projection , 2009, NIPS.
[34] Yi Ma,et al. The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices , 2010, Journal of structural biology.
[35] Francis R. Bach,et al. Low-Rank Optimization on the Cone of Positive Semidefinite Matrices , 2008, SIAM J. Optim..
[36] Yoram Bresler,et al. ADMiRA: Atomic Decomposition for Minimum Rank Approximation , 2009, IEEE Transactions on Information Theory.
[37] Pierre-Antoine Absil,et al. Riemannian BFGS Algorithm with Applications , 2010 .
[38] Stefan Vandewalle,et al. A Riemannian Optimization Approach for Computing Low-Rank Solutions of Lyapunov Equations , 2010, SIAM J. Matrix Anal. Appl..
[39] Emmanuel J. Candès,et al. The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.
[40] Emmanuel J. Candès,et al. Matrix Completion With Noise , 2009, Proceedings of the IEEE.
[41] Robert D. Nowak,et al. Online identification and tracking of subspaces from highly incomplete information , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).
[42] Marie Michenkova. Numerical algorithms for low-rank matrix completion problems , 2011 .
[43] Stephen J. Wright,et al. Identifying Activity , 2009, SIAM J. Optim..
[44] Gilles Meyer. Geometric optimization algorithms for linear regression on fixed-rank matrices , 2011 .
[45] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[46] Shiqian Ma,et al. Convergence of Fixed-Point Continuation Algorithms for Matrix Rank Minimization , 2009, Found. Comput. Math..
[47] Shiqian Ma,et al. Fixed point and Bregman iterative methods for matrix rank minimization , 2009, Math. Program..
[48] Olgica Milenkovic,et al. Subspace Evolution and Transfer (SET) for Low-Rank Matrix Completion , 2010, IEEE Transactions on Signal Processing.
[49] David F. Gleich,et al. Rank aggregation via nuclear norm minimization , 2011, KDD.
[50] Pierre-Antoine Absil,et al. RTRMC: A Riemannian trust-region method for low-rank matrix completion , 2011, NIPS.
[51] Silvere Bonnabel,et al. Linear Regression under Fixed-Rank Constraints: A Riemannian Approach , 2011, ICML.
[52] Silvere Bonnabel,et al. Regression on Fixed-Rank Positive Semidefinite Matrices: A Riemannian Approach , 2010, J. Mach. Learn. Res..
[53] Emmanuel J. Candès,et al. Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..
[54] Yin Zhang,et al. Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm , 2012, Mathematical Programming Computation.
[55] Jérôme Malick,et al. Projection-like Retractions on Matrix Manifolds , 2012, SIAM J. Optim..
[56] H. Harbrecht,et al. On the low-rank approximation by the pivoted Cholesky decomposition , 2012 .
[57] Yong-Jin Liu,et al. An implementable proximal point algorithmic framework for nuclear norm minimization , 2012, Math. Program..
[58] Bart Vandereycken. Low-Rank Matrix Completion by Riemannian Optimization , 2012, SIAM J. Optim..
[59] Daphna Weinshall,et al. Online Learning in the Embedded Manifold of Low-rank Matrices , 2012, J. Mach. Learn. Res..
[60] G. Sapiro,et al. A collaborative framework for 3D alignment and classification of heterogeneous subvolumes in cryo-electron tomography. , 2013, Journal of structural biology.
[61] Bamdev Mishra,et al. Low-Rank Optimization with Trace Norm Penalty , 2011, SIAM J. Optim..
[62] S. Osher,et al. Fast Singular Value Thresholding without Singular Value Decomposition , 2013 .
[63] Steven Thomas Smith,et al. Optimization Techniques on Riemannian Manifolds , 2014, ArXiv.
[64] Bamdev Mishra,et al. Fixed-rank matrix factorizations and Riemannian low-rank optimization , 2012, Comput. Stat..
[65] K. Schittkowski,et al. NONLINEAR PROGRAMMING , 2022 .