Integrated management of Striga gesnerioides in cowpea using resistant varieties, improved crop nutrition and rhizobium inoculants

[1]  S. Al‐Babili,et al.  Current progress in Striga management , 2021, Plant physiology.

[2]  Timothy R. Silberg,et al.  Modeling smallholder agricultural systems to manage Striga in the semi-arid tropics , 2021 .

[3]  M. Gedil,et al.  Identification of QTLs Controlling Resistance/Tolerance to Striga hermonthica in an Extra-Early Maturing Yellow Maize Population , 2020, Agronomy.

[4]  D. Chikoye,et al.  Mitigating Striga hermonthica parasitism and damage in maize using soybean rotation, nitrogen application, and Striga-resistant varieties in the Nigerian savannas , 2020, Experimental Agriculture.

[5]  M. Giovannetti,et al.  Mycorrhizal networks facilitate the colonization of legume roots by a symbiotic nitrogen-fixing bacterium , 2020, Mycorrhiza.

[6]  F. Kanampiu,et al.  The role of legumes in the sustainable intensification of African smallholder agriculture: Lessons learnt and challenges for the future , 2019, Agriculture, ecosystems & environment.

[7]  K. Mekonnen,et al.  Inoculation and phosphorus fertilizer improve food-feed traits of grain legumes in mixed crop-livestock systems of Ethiopia , 2019, Agriculture, ecosystems & environment.

[8]  S. Al‐Babili,et al.  Suicidal germination as a control strategy forStriga hermonthica(Benth.) in smallholder farms of sub‐Saharan Africa , 2019, PLANTS, PEOPLE, PLANET.

[9]  K. Giller,et al.  N2Africa Putting nitrogen fixation to work for smallholder farmers in Africa, Podcaster no. 55, February - March 2019 , 2019 .

[10]  F. Kanampiu,et al.  Assessment of Management Options on Striga Infestation and Maize Grain Yield in Kenya , 2018, Weed Science.

[11]  J. Rodenburg,et al.  Combined effects of cover crops, mulch, zero-tillage and resistant varieties on Striga asiatica (L.) Kuntze in rice-maize rotation systems , 2018 .

[12]  K. Giller,et al.  Sustainable intensification through rotations with grain legumes in Sub-Saharan Africa: A review , 2017, Agriculture, ecosystems & environment.

[13]  K. Giller,et al.  Benefits of inoculation, P fertilizer and manure on yields of common bean and soybean also increase yield of subsequent maize , 2017, Agriculture, ecosystems & environment.

[14]  F. Kanampiu,et al.  Soyabean response to rhizobium inoculation across sub-Saharan Africa: Patterns of variation and the role of promiscuity , 2017, Agriculture, ecosystems & environment.

[15]  J. Rodenburg,et al.  Genetic variation and host–parasite specificity of Striga resistance and tolerance in rice: the need for predictive breeding , 2017, The New phytologist.

[16]  T. Close,et al.  Genomic Tools in Cowpea Breeding Programs: Status and Perspectives , 2016, Front. Plant Sci..

[17]  K. Giller,et al.  Understanding variability in soybean yield and response to P-fertilizer and rhizobium inoculants on farmers’ fields in northern Nigeria , 2016 .

[18]  E. Baars N 2 Africa Putting nitrogen fixation to work for smallholder farmers in Africa Dissemination Master Plan , 2016 .

[19]  J. Pickett,et al.  Isolation and identification of Desmodium root exudates from drought tolerant species used as intercrops against Striga hermonthica , 2015, Phytochemistry.

[20]  K. Giller,et al.  Integrated soil fertility management in sub-Saharan Africa: unravelling local adaptation , 2014 .

[21]  P. Simier,et al.  Lipopolysaccharide isolated from Rhizobium leguminosarum strain P.SOM induces resistance in pea roots against Orobanche crenata , 2014 .

[22]  F. Ekeleme,et al.  Assessment of level, extent and factors influencing Striga infestation of cereals and cowpea in a Sudan Savanna ecology of northern Nigeria , 2014 .

[23]  Mark H. Wright,et al.  Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs , 2014, Proceedings of the National Academy of Sciences.

[24]  J. Pickett,et al.  Cumulative effects and economic benefits of intercropping maize with food legumes on Striga hermonthica infestation , 2014 .

[25]  J. B. Reid,et al.  Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency. , 2013, Molecular plant.

[26]  K. Giller,et al.  Maize-grain legume intercropping is an attractive option for ecological intensification that reduces climatic risk for smallholder farmers in central Mozambique , 2012 .

[27]  N. Davies,et al.  Strigolactones promote nodulation in pea , 2011, Planta.

[28]  T. Tesso,et al.  Integrating Multiple Control Options Enhances Striga Management and Sorghum Yield on Heavily Infested Soils , 2011 .

[29]  D. Rubiales,et al.  Innovations in parasitic weeds management in legume crops. A review , 2011, Agronomy for Sustainable Development.

[30]  P. Simier,et al.  Bioprotection mechanisms of pea plant by Rhizobium leguminosarum against Orobanche crenata , 2010 .

[31]  M. Delgado,et al.  First indications for the involvement of strigolactones on nodule formation in alfalfa (Medicago sativa) , 2010 .

[32]  K. Shepherd,et al.  Integrated soil fertility management: operational definition and consequences for implementation and dissemination. , 2010 .

[33]  K. Yoneyama,et al.  Strigolactones: structures and biological activities. , 2009, Pest management science.

[34]  R. Matúšová,et al.  Strigolactones: ecological significance and use as a target for parasitic plant control. , 2009, Pest management science.

[35]  Jean-Charles Portais,et al.  Strigolactone inhibition of shoot branching , 2008, Nature.

[36]  C. Leeuwis,et al.  Farmers’ agronomic and social evaluation of productivity, yield and N2-fixation in different cowpea varieties and their subsequent residual N effects on a succeeding maize crop , 2008, Nutrient Cycling in Agroecosystems.

[37]  H. Bouwmeester,et al.  Rhizosphere communication of plants, parasitic plants and AM fungi. , 2007, Trends in plant science.

[38]  O. Belhadj,et al.  The potential of Rhizobium strains for biological control of Orobanche crenata , 2007, Biologia.

[39]  P. Simier,et al.  Some compatible Rhizobium leguminosarum strains in peas decrease infections when parasitised by Orobanche crenata , 2007 .

[40]  T. Kuyper,et al.  Colonization by Arbuscular Mycorrhizal Fungi of Sorghum Leads to Reduced Germination and Subsequent Attachment and Emergence of Striga hermonthica , 2007, Plant signaling & behavior.

[41]  T. Kuyper,et al.  Can Arbuscular Mycorrhizal Fungi Contribute to Striga Management on Cereals in Africa? , 2006 .

[42]  Jonne Rodenburg,et al.  Characterization of host tolerance to Striga hermonthica , 2006, Euphytica.

[43]  K. Akiyama,et al.  Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi , 2005, Nature.

[44]  M. Press,et al.  Interaction between Orobanche crenata and its host legumes: unsuccessful haustorial penetration and necrosis of the developing parasite. , 2005, Annals of botany.

[45]  A. Oswald,et al.  Striga control—technologies and their dissemination , 2005 .

[46]  T. Kuyper,et al.  Field inoculation with arbuscular mycorrhizal fungi reduces Striga hermonthica performance on cereal crops and has the potential to contribute to integrated Striga management , 2005 .

[47]  B. Vanlauwe,et al.  The contribution of nitrogen by promiscuous soybeans to maize based cropping the moist savanna of Nigeria , 2002, Plant and Soil.

[48]  W. Graves,et al.  Nodulation response of woody Papilionoid species after inoculation with rhizobia and soil from Hawaii, Asia and North America , 1998, Plant and Soil.

[49]  F. Kanampiu,et al.  Multi-site, multi-season field tests demonstrate that herbicide seed-coating herbicide-resistance maize controls Striga spp. and increases yields in several African countries , 2003 .

[50]  N. Sanginga,et al.  Can introduced and indigenous rhizobial strains compete for nodule formation by promiscuous soybean in the moist savanna agroecological zone of Nigeria? , 2003, Biology and Fertility of Soils.

[51]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[52]  F. Kanampiu,et al.  Imazapyr seed dressings for Striga control on acetolactate synthase target-site resistant maize , 2001 .

[53]  D. Berner,et al.  Germination Stimulation of Striga gesnerioides Seeds by Hosts and Nonhosts. , 1998, Plant disease.

[54]  F. Hashem,et al.  Survival of Bradyrhizobium sp. (Arachis) on fungicide-treated peanut seed in relationship to plant growth and yield , 1997 .

[55]  K. Giller,et al.  Nitrogen Fixation in Tropical Cropping Systems , 1993 .

[56]  J. Lane,et al.  Resistance of cowpea [Vigna unguiculata (L.) Walp.] to Striga gesnerioides (Willd.) Vatke, a parasitic angiosperm. , 1993, The New phytologist.

[57]  K. Wood,et al.  Isolation of strigol, a germination stimulant for Striga asiatica, from host plants , 1993 .

[58]  A. Emechebe,et al.  Inheritance of Striga resistance in cowpea genotype B301. , 1990 .

[59]  D. S. Hayman Mycorrhizae of nitrogen-fixing legumes , 1986 .

[60]  P. Somasegaran,et al.  Comparison of the Pour, Spread, and Drop Plate Methods for Enumeration of Rhizobium spp. in Inoculants Made from Presterilized Peat , 1982, Applied and environmental microbiology.

[61]  J. Vincent A manual for the practical study of root-nodule bacteria , 1971 .