On Feedback Vertex Set: New Measure and New Structures

We present a new parameterized algorithm for the feedback vertex set problem (fvs) on undirected graphs. We approach the problem by considering a variation of it, the disjoint feedback vertex set problem (disjoint-fvs), which finds a feedback vertex set of size $$k$$k that has no overlap with a given feedback vertex set $$F$$F of the graph $$G$$G. We develop an improved kernelization algorithm for disjoint-fvs and show that disjoint-fvs can be solved in polynomial time when all vertices in $$G{\setminus }F$$G\F have degrees upper bounded by three. We then propose a new branch-and-search process on disjoint-fvs, and introduce a new branch-and-search measure. The process effectively reduces a given graph to a graph on which disjoint-fvs becomes polynomial-time solvable, and the new measure more accurately evaluates the efficiency of the process. These algorithmic and combinatorial studies enable us to develop an $$O^*(3.83^k)$$O∗(3.83k)-time parameterized algorithm for the general fvs problem, improving all previous algorithms for the problem.

[1]  Fedor V. Fomin,et al.  On the Minimum Feedback Vertex Set Problem: Exact and Enumeration Algorithms , 2008, Algorithmica.

[2]  Jianer Chen,et al.  An Improved Parameterized Algorithm for the Minimum Node Multiway Cut Problem , 2007, WADS.

[3]  Michael R. Fellows,et al.  Nonconstructive tools for proving polynomial-time decidability , 1988, JACM.

[4]  Dániel Marx,et al.  Lower bounds based on the Exponential Time Hypothesis , 2011, Bull. EATCS.

[5]  Michal Pilipczuk,et al.  Solving Connectivity Problems Parameterized by Treewidth in Single Exponential Time , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[6]  Ying Xu,et al.  Efficient Theoretic and Practical Algorithms for Linear Matroid Intersection Problems , 1996, J. Comput. Syst. Sci..

[7]  Rolf Niedermeier,et al.  Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization , 2006, J. Comput. Syst. Sci..

[8]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .

[9]  Dan Geiger,et al.  Optimization of Pearl's Method of Conditioning and Greedy-Like Approximation Algorithms for the Vertex Feedback Set Problem , 1996, Artif. Intell..

[10]  Yanpei Liu,et al.  A POLYNOMIAL ALGORITHM FOR FINDING THE MINIMUM FEEDBACK VERTEX SET OF A 3-REGULAR SIMPLE GRAPH 1 , 1999 .

[11]  Jonathan L. Gross,et al.  Finding a maximum-genus graph imbedding , 1988, JACM.

[12]  Michael R. Fellows,et al.  An O(2O(k)n3) FPT Algorithm for the Undirected Feedback Vertex Set Problem , 2005, COCOON.

[13]  Abraham Silberschatz,et al.  Operating System Concepts , 1983 .

[14]  Hans L. Bodlaender,et al.  On Disjoint Cycles , 1991, Int. J. Found. Comput. Sci..

[15]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[16]  Reuven Bar-Yehuda,et al.  Randomized Algorithms for the Loop Cutset Problem , 2000, J. Artif. Intell. Res..

[17]  Ewald Speckenmeyer,et al.  Untersuchungen zum Feedback-vertex-set-Problem in ungerichteten Graphen , 1983 .

[18]  Igor Razgon Exact Computation of Maximum Induced Forest , 2006, SWAT.

[19]  G DowneyRod,et al.  Fixed-Parameter Tractability and Completeness I , 1995 .

[20]  Ewald Speckenmeyer On feedback vertex sets and nonseparating independent sets in cubic graphs , 1988, J. Graph Theory.

[21]  Saket Saurabh,et al.  Faster fixed parameter tractable algorithms for finding feedback vertex sets , 2006, TALG.

[22]  Ronald L. Rivest,et al.  Introduction to Algorithms, Second Edition , 2001 .

[23]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[24]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[25]  Fedor V. Fomin,et al.  Finding a Minimum Feedback Vertex Set in Time O (1.7548n) , 2006, IWPEC.

[26]  Michael R. Fellows,et al.  Fixed Parameter Tractability and Completeness , 1992, Complexity Theory: Current Research.

[27]  Marcin Pilipczuk,et al.  Faster deterministic Feedback Vertex Set , 2013, Inf. Process. Lett..

[28]  Erik D. Demaine,et al.  Bidimensional Structures: Algorithms, Combinatorics and Logic (Dagstuhl Seminar 13121) , 2013, Dagstuhl Reports.

[29]  Panos M. Pardalos,et al.  Feedback Set Problems , 1999, Handbook of Combinatorial Optimization.

[30]  Michael R. Fellows,et al.  Fixed-Parameter Tractability and Completeness II: On Completeness for W[1] , 1995, Theor. Comput. Sci..

[31]  Saket Saurabh,et al.  Faster Fixed Parameter Tractable Algorithms for Undirected Feedback Vertex Set , 2002, ISAAC.

[32]  Piotr Berman,et al.  A 2-Approximation Algorithm for the Undirected Feedback Vertex Set Problem , 1999, SIAM J. Discret. Math..

[33]  P. Erd Os,et al.  On the maximal number of disjoint circuits of a graph , 2022, Publicationes Mathematicae Debrecen.

[34]  Michael J. Pelsmajer,et al.  Parameterized Algorithms for Feedback Vertex Set , 2004, IWPEC.

[35]  Matthias F. Stallmann,et al.  Efficient Algorithms for Graphic Matroid Intersection and Parity (Extended Abstract) , 1985, ICALP.

[36]  Jianer Chen,et al.  Improved algorithms for feedback vertex set problems , 2008, J. Comput. Syst. Sci..

[37]  Jianer Chen,et al.  Improved algorithms for feedback vertex set problems , 2007, J. Comput. Syst. Sci..

[38]  Peter B. Galvin,et al.  Operating System Concepts, 4th Ed. , 1993 .

[39]  Bruce A. Reed,et al.  Finding odd cycle transversals , 2004, Oper. Res. Lett..

[40]  Klaudia Frankfurter Computers And Intractability A Guide To The Theory Of Np Completeness , 2016 .

[41]  Yoji Kajitani,et al.  On the nonseparating independent set problem and feedback set problem for graphs with no vertex degree exceeding three , 1988, Discret. Math..

[42]  Jianer Chen,et al.  On Feedback Vertex Set New Measure and New Structures , 2010, SWAT.