A chaotic modulation scheme based on algebraic observability and sliding mode differentiators

A chaotic communication technique for the transmission of secure information signals is presented. The proposed method allows the reconstruction of the system input (i.e., the information signal) from a scalar observable (i.e., the transmitted signal) and its derivatives. The approach is based on the concept of algebraic observability. A systematic procedure for the chaotic demodulation of the class of algebraic chaotic systems is described and discussed. The proposed procedure also allows one to directly identify a suitable ‘‘response’’ system and the ‘‘drive signal’’. Moreover, it is shown that sliding differentiators can be used to reconstruct the time derivatives of the observable, and thus the information signal is recovered at the receiving end through some simple signal-processing operations such as multiplication, addition and subtraction. This allows the estimation of the system state and of the input signal (i.e., the information recovery) in a finite time. � 2005 Elsevier Ltd. All rights reserved.

[1]  Xinghuo Yu,et al.  Nonlinear derivative estimator , 1996 .

[2]  A. Levant Robust exact differentiation via sliding mode technique , 1998 .

[3]  Jessy W. Grizzle,et al.  Interpolation and numerical differentiation for observer design , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[4]  Moez Feki,et al.  Secure digital communication using discrete-time chaos synchronization , 2003 .

[5]  T. Glad,et al.  An Algebraic Approach to Linear and Nonlinear Control , 1993 .

[6]  A. Levant,et al.  Higher order sliding modes and arbitrary-order exact robust differentiation , 2001, 2001 European Control Conference (ECC).

[7]  Salim Ibrir,et al.  On regularized numerical observers , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[8]  L. Chua,et al.  Communication Systems via Chaotic Signals from a Reconstruction Viewpoint , 1997 .

[9]  Silvano Cincotti,et al.  Hyperchaotic behaviour of two bi‐directionally coupled Chua's circuits , 2002, Int. J. Circuit Theory Appl..

[10]  K. Forsman Constructive Commutative Algebra in Nonlinear Control Theory , 1991 .

[11]  Daniel M. Dubois,et al.  Computing Anticipatory Systems , 1998 .

[12]  Rabinder N Madan,et al.  Chua's Circuit: A Paradigm for Chaos , 1993, Chua's Circuit.

[13]  J. Sprott,et al.  Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[15]  Henk Nijmeijer,et al.  System identification in communication with chaotic systems , 2000 .

[16]  C. Wu,et al.  Chua's Equation with Cubic Nonlinearity , 1996 .

[17]  Nikolai F. Rulkov,et al.  Chaotic pulse position modulation: a robust method of communicating with chaos , 2000, IEEE Communications Letters.

[18]  Silvano Cincotti,et al.  Complex dynamical behaviours in two non-linearly coupled Chua’s circuits , 2004 .

[19]  Hassan K. Khalil,et al.  Nonlinear Output-Feedback Tracking Using High-gain Observer and Variable Structure Control, , 1997, Autom..

[20]  R. Rovatti,et al.  Chaotic complex spreading sequences for asynchronous DS-CDMA. Part II. Some theoretical performance bounds , 1998 .

[21]  Shen-Iuan Liu,et al.  Dual-input RC integrator and differentiator with tuneable time constants using current feedback amplifiers , 1999 .

[22]  H. K. Khalil,et al.  Numerical differentiation using high-gain observers , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[23]  A. N. Sharkovskiĭ Dynamic systems and turbulence , 1989 .

[24]  O. Rössler An equation for hyperchaos , 1979 .

[25]  Grebogi,et al.  Communicating with chaos. , 1993, Physical review letters.

[26]  A. Levant Sliding order and sliding accuracy in sliding mode control , 1993 .

[27]  Leon O. Chua,et al.  Applications of Chaotic Digital Code-Division Multiple Access (CDMA) to Cable Communication Systems , 1998 .

[28]  G. Mazzini,et al.  Corrections to "Chaotic Complex Spreading Sequences for Asynchronous DS-CDMA—Part I: System Modeling and Results" 1 , 1998 .

[29]  Elio Usai,et al.  Chaos synchronization via sliding modes , 2001 .

[30]  Alan V. Oppenheim,et al.  Synchronization of Lorenz-based chaotic circuits with applications to communications , 1993 .

[31]  Michael Peter Kennedy,et al.  Chaos shift keying : modulation and demodulation of a chaotic carrier using self-sychronizing chua"s circuits , 1993 .

[32]  Elio Usai,et al.  An algebraic observability approach to chaos synchronization by sliding differentiators , 2002 .

[33]  Hebertt Sira-Ramírez,et al.  A dynamical variable structure control strategy in asymptotic output tracking problems , 1993, IEEE Trans. Autom. Control..

[34]  A. Oksasoglu,et al.  A linear inverse system approach in the context of chaotic communications , 1997 .

[35]  C. K. Michael Tse,et al.  A multiple access scheme for chaos-based digital communication systems utilizing transmitted reference , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[36]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[37]  Martin Hasler,et al.  Synchronization of chaotic systems and transmission of information , 1998 .

[38]  Murat Akgül,et al.  Observer Based Chaotic Message Transmission , 2003, Int. J. Bifurc. Chaos.

[39]  G. Mazzini,et al.  Scanning the special issue - special issue on applications of nonlinear dynamics to electronic and information engineering , 2002, Proceedings of the IEEE.

[40]  Giorgio Bartolini,et al.  Digital second-order sliding mode control for uncertain nonlinear systems , 2001, Autom..

[41]  Michael Peter Kennedy,et al.  Communications using chaos/spl Gt/MINUS. III. Performance bounds for correlation receivers , 2000 .

[42]  O. Rössler An equation for continuous chaos , 1976 .

[43]  M. Hasler,et al.  Communication by chaotic signals : the inverse system approach , 1996 .

[44]  Ned J. Corron,et al.  A new approach to communications using chaotic signals , 1997 .

[45]  Antonella Ferrara,et al.  Real-Time Output Derivatives Estimation by Means of Higher Order Sliding Modes , 1998 .

[46]  Michael Peter Kennedy,et al.  The role of synchronization in digital communications using chaos. I . Fundamentals of digital communications , 1997 .

[47]  Leon O. Chua,et al.  Spread Spectrum Communication Through Modulation of Chaos , 1993 .

[48]  Tarja Susi Linköping Studies in Science and Technology Dissertation No. 1019 , 2006 .

[49]  Giorgio Bartolini,et al.  First and second derivative estimation by sliding mode technique , 2000 .

[50]  Lennart Ljung,et al.  On global identifiability for arbitrary model parametrizations , 1994, Autom..