Effect of pattern density for contact windows in an attenuated phase shift mask

An attenuated phase shift mask (PSM) is the most promising candidate for the high volume production lithography process among the various PSM types. It has been shown that attenuated PSM improves the lithographic performance such as depth of focus, especially in contact window by its edge enhancement. In this paper, the side lobe effect that restricts the lithographic performance of attenuated PSM and the light intensity distribution have been examined on changing the pattern density and the transmittance by experimental and simulation. The side lobe effect caused by proximity effect is very severe when pitch sizes are in the range of 0.7-0.9 micrometers for 0.35-0.45 micrometers contact hole on mask and it is enlarged by defocus exposure condition. The side lobe effect in this range of pitch size may forms the additional pattern in wafer, which restricts the application of attenuated PSM. The side lobe effect can be removed by additional pattern positioning at the center of four contact hole patterns, but simulation result of Exposure-Defocus tree (E-D tree) shows that lithographic performance of attenuated PSM is decreased by an auxiliary pattern. In the application of attenuated PSM in dense pattern, the relation between performance and side lobe effect is mutually contradictory.

[1]  Burn Jeng Lin,et al.  THE ATTENUATED PHASE-SHIFTING MASK , 1992 .

[2]  Y. Todokoro,et al.  Transparent phase shifting mask , 1990, International Technical Digest on Electron Devices.