CH3NH3PbI3/GeSe bilayer heterojunction solar cell with high performance

[1]  Qi Chen,et al.  Chemical Reduction of Intrinsic Defects in Thicker Heterojunction Planar Perovskite Solar Cells , 2017, Advanced materials.

[2]  Min Gyu Kim,et al.  Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells , 2017, Science.

[3]  L. Wan,et al.  GeSe Thin-Film Solar Cells Fabricated by Self-Regulated Rapid Thermal Sublimation. , 2017, Journal of the American Chemical Society.

[4]  S. Zakeeruddin,et al.  A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells , 2016, Science.

[5]  Fugen Wu,et al.  Structural anisotropy results in strain-tunable electronic and optical properties in monolayer GeX and SnX (X = S, Se, Te). , 2016, The Journal of chemical physics.

[6]  E. Kioupakis,et al.  Anisotropic Spin Transport and Strong Visible-Light Absorbance in Few-Layer SnSe and GeSe. , 2015, Nano letters.

[7]  Huijuan Cui,et al.  A modeling method to enhance the conversion efficiency by optimizing light trapping structure in thin-film solar cells , 2015 .

[8]  Tingting Shi,et al.  Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance , 2014, Advanced materials.

[9]  Michael Grätzel,et al.  First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications , 2013 .

[10]  Kamaruzzaman Sopian,et al.  A review on the role of materials science in solar cells , 2012 .

[11]  Andreas Sumper,et al.  Power oscillation damping supported by wind power: A review , 2012 .

[12]  A. Alivisatos,et al.  Dielectric core-shell optical antennas for strong solar absorption enhancement. , 2012, Nano letters.

[13]  Harry A Atwater,et al.  Design of nanostructured solar cells using coupled optical and electrical modeling. , 2012, Nano letters.

[14]  J. Gray The Physics of the Solar Cell , 2011 .

[15]  Dimitri D. Vaughn,et al.  Single-crystal colloidal nanosheets of GeS and GeSe. , 2010, Journal of the American Chemical Society.

[16]  Christiana Honsberg,et al.  Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method , 2008 .

[17]  L. Makinistian,et al.  Ab initio calculations of the electronic and optical properties of germanium selenide , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  Niyazi Serdar Sariciftci,et al.  Organic solar cells: An overview , 2004 .

[19]  M. Fox Optical Properties of Solids , 2010 .

[20]  R. Tscharner,et al.  Photovoltaic technology: the case for thin-film solar cells , 1999, Science.

[21]  C. Carlone,et al.  Influence of temperature and pressure on the electronic transitions in SnS and SnSe semiconductors. , 1990, Physical review. B, Condensed matter.

[22]  M. Vodenicharova,et al.  Bulk — limited conductivity in germanium monoselenide films , 1989 .

[23]  A. Otto,et al.  Optical and electron-energy-loss spectroscopy of GeS, GeSe, SnS, and SnSe single crystals , 1977 .

[24]  D. Neamen Semiconductor physics and devices basic principles Copy , 2004 .

[25]  J. Reithmaier,et al.  Nanotechnological Basis for Advanced Sensors , 2011 .

[26]  Mattheos Santamouris,et al.  Advances in passive cooling , 2007 .

[27]  A. G. Milnes,et al.  Heterojunctions and Metal Semiconductor Junctions , 1972 .