Estimation of distribution-based multiobjective design space exploration for energy and throughput-optimized MPSoCs

Modern multicore architectures comprise a large set of components and parameters that require being matched to achieve the best balance between power consumption and throughput performance for a particular application domain. The exploration of design space for finding the best power–throughput trade-off is a combinatorial optimization problem with a large number of combinations, and. in general, its solution is prohibitively difficult to be explored exhaustively. However, fortunately, evolutionary algorithms (EAs) have the potential to efficiently solve this problem with reasonable computational complexity. In this paper, we consider a multiobjective design space exploration (DSE) problem with two conflicting objectives. The first objective corresponds to power consumption minimization while the second objective relates to throughput maximization. We approach this problem by employing the estimation of distribution algorithm (EDA), which belongs to the family of EAs. The proposed EDA-based DSE (EDA-DSE) scheme efficiently selects the design parameters (i.e. cache size, number of cores, and operating frequency) with an efficient power–throughput ratio. The proposed scheme is verified using cycle-accurate simulations over a set of benchmarks and the simulation results show a significant reduction in energy-delay product for all benchmark applications when compared to the default baseline configuration and genetic algorithm.

[1]  Norman P. Jouppi,et al.  CACTI 6.0: A Tool to Model Large Caches , 2009 .

[2]  Yuping Wang,et al.  Multi-population Based Univariate Marginal Distribution Algorithm for Dynamic Optimization Problems , 2010, J. Intell. Robotic Syst..

[4]  Henri Pierreval,et al.  Multi Objective Optimization Using Ant Colonies , 2009 .

[5]  Uwe Aickelin,et al.  An estimation of distribution algorithm for nurse scheduling , 2007, Ann. Oper. Res..

[6]  Klaus D. McDonald-Maier,et al.  Analytical Evaluation of Energy and Throughput for Multilevel Caches , 2010, 2010 12th International Conference on Computer Modelling and Simulation.

[7]  David E. Goldberg,et al.  Hierarchical Bayesian Optimization Algorithm , 2006, Scalable Optimization via Probabilistic Modeling.

[8]  Qingfu Zhang,et al.  Hybrid Estimation of Distribution Algorithm for Multiobjective Knapsack Problem , 2004, EvoCOP.

[9]  Babak Falsafi,et al.  Exploiting choice in resizable cache design to optimize deep-submicron processor energy-delay , 2002, Proceedings Eighth International Symposium on High Performance Computer Architecture.

[10]  Jung Ho Ahn,et al.  McPAT: An integrated power, area, and timing modeling framework for multicore and manycore architectures , 2009, 2009 42nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[11]  Edmondo A. Minisci,et al.  MOPED: A Multi-objective Parzen-Based Estimation of Distribution Algorithm for Continuous Problems , 2003, EMO.

[12]  Ricardo H. C. Takahashi,et al.  Using an enhanced integer NSGA-II for solving the multiobjective Generalized Assignment Problem , 2010, IEEE Congress on Evolutionary Computation.

[13]  Anoop Gupta,et al.  The SPLASH-2 programs: characterization and methodological considerations , 1995, ISCA.

[14]  Ann Gordon-Ross,et al.  CPACT - The conditional parameter adjustment cache tuner for dual-core architectures , 2011, 2011 IEEE 29th International Conference on Computer Design (ICCD).

[15]  S. Muthukrishnan,et al.  AGFS: Adaptive Genetic Fuzzy System for medical data classification , 2014, Appl. Soft Comput..

[16]  Nuno Horta,et al.  Analog Circuits and Systems Optimization based on Evolutionary Computation Techniques , 2010, Studies in Computational Intelligence.

[17]  Manuel Valenzuela-Rendón,et al.  A Non-Generational Genetic Algorithm for Multiobjective Optimization , 1997, ICGA.

[18]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[19]  Frank Vahid,et al.  Platune: a tuning framework for system-on-a-chip platforms , 2002, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[20]  Xin-She Yang,et al.  Metaheuristic Optimization: Algorithm Analysis and Open Problems , 2011, SEA.

[21]  Chantal Ykman-Couvreur,et al.  MULTICUBE: Multi-objective Design Space Exploration of Multi-core Architectures , 2010, 2010 IEEE Computer Society Annual Symposium on VLSI.

[22]  Gu-Yeon Wei,et al.  Quantifying acceleration: Power/performance trade-offs of application kernels in hardware , 2013, International Symposium on Low Power Electronics and Design (ISLPED).

[23]  Ramon Canal,et al.  Design space exploration for multicore architectures: a power/performance/thermal view , 2006, ICS '06.

[24]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[25]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[26]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[27]  Chantal Ykman-Couvreur,et al.  An industrial design space exploration framework for supporting run-time resource management on multi-core systems , 2010, 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010).

[28]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[29]  Gul Agha,et al.  Energy-performance trade-off analysis of parallel algorithms for shared memory architectures , 2011, Sustain. Comput. Informatics Syst..

[30]  Josef Schwarz,et al.  The Parallel Bayesian Optimization Algorithm , 2000 .

[31]  Mark D. Hill,et al.  Amdahl's Law in the Multicore Era , 2008, Computer.

[32]  Maurizio Palesi,et al.  Multi-objective design space exploration using genetic algorithms , 2002, Proceedings of the Tenth International Symposium on Hardware/Software Codesign. CODES 2002 (IEEE Cat. No.02TH8627).

[33]  Kanad Ghose,et al.  Analytical energy dissipation models for low-power caches , 1997, ISLPED '97.

[34]  Francky Catthoor,et al.  Managing dynamic concurrent tasks in embedded real-time multimedia systems , 2002, 15th International Symposium on System Synthesis, 2002..

[35]  Rajeev Balasubramonian,et al.  Memory hierarchy reconfiguration for energy and performance in general-purpose processor architectures , 2000, MICRO 33.

[36]  Agostinho C. Rosa,et al.  A self-organized criticality mutation operator for dynamic optimization problems , 2008, GECCO '08.

[37]  Onur Dikmen,et al.  Estimating Distributions in Genetic Algorithms , 2003, ISCIS.

[38]  G. Blake,et al.  A survey of multicore processors , 2009, IEEE Signal Processing Magazine.

[39]  Christine A. Shoemaker,et al.  Flicker: a dynamically adaptive architecture for power limited multicore systems , 2013, ISCA.

[40]  Vittorio Zaccaria,et al.  ReSPIR: A Response Surface-Based Pareto Iterative Refinement for Application-Specific Design Space Exploration , 2009, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[41]  Kay Chen Tan,et al.  A Hybrid Estimation of Distribution Algorithm with Decomposition for Solving the Multiobjective Multiple Traveling Salesman Problem , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[42]  Heinz Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions II. Continuous Parameters , 1996, PPSN.

[43]  David H. Bailey,et al.  FFTs in external or hierarchical memory , 1989, Proceedings of the 1989 ACM/IEEE Conference on Supercomputing (Supercomputing '89).

[44]  Heinz Mühlenbein,et al.  FDA -A Scalable Evolutionary Algorithm for the Optimization of Additively Decomposed Functions , 1999, Evolutionary Computation.

[45]  Weixun Wang,et al.  Dynamic Reconfiguration of Two-Level Caches in Soft Real-Time Embedded Systems , 2009, 2009 IEEE Computer Society Annual Symposium on VLSI.

[46]  Per Kristian Lehre,et al.  When is an estimation of distribution algorithm better than an evolutionary algorithm? , 2009, 2009 IEEE Congress on Evolutionary Computation.

[47]  Etienne Kerre,et al.  Fuzzy techniques in image processing , 2000 .

[48]  James E. Smith,et al.  Statistical Simulation: Adding Efficiency to the Computer Designer's Toolbox , 2003, IEEE Micro.

[49]  Zhao Zhang,et al.  MASTER: A Multicore Cache Energy-Saving Technique Using Dynamic Cache Reconfiguration , 2014, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[50]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[51]  Gang Wang,et al.  Design space exploration using time and resource duality with the ant colony optimization , 2006, 2006 43rd ACM/IEEE Design Automation Conference.

[52]  Klaus D. McDonald-Maier,et al.  Data Cache-Energy and Throughput Models: Design Exploration for Embedded Processors , 2009, EURASIP J. Embed. Syst..

[53]  Nadia N. Qadri,et al.  Energy and throughput aware fuzzy logic based reconfiguration for MPSoCs , 2014, J. Intell. Fuzzy Syst..

[54]  David E. Goldberg,et al.  Scalability of the Bayesian optimization algorithm , 2002, Int. J. Approx. Reason..

[55]  Theo Ungerer,et al.  Optimizing a Superscalar System using Multi-objective Design Space Exploration , 2011 .

[56]  Pier Luca Lanzi,et al.  Ant Colony Optimization for mapping, scheduling and placing in reconfigurable systems , 2013, 2013 NASA/ESA Conference on Adaptive Hardware and Systems (AHS-2013).