Convex underestimators of polynomials

Convex underestimators of a polynomial on a box. Given a non convex polynomial $${f\in \mathbb{R}[{\rm x}]}$$ and a box $${{\rm B}\subset \mathbb{R}^n}$$, we construct a sequence of convex polynomials $${(f_{dk})\subset \mathbb{R}[{\rm x}]}$$, which converges in a strong sense to the “best” (convex and degree-d) polynomial underestimator $${f^{*}_{d}}$$ of f. Indeed, $${f^{*}_{d}}$$ minimizes the L1-norm $${\Vert f-g\Vert_1}$$ on B, over all convex degree-d polynomial underestimators g of f. On a sample of problems with non convex f, we then compare the lower bounds obtained by minimizing the convex underestimator of f computed as above and computed via the popular αBB method and some of its other refinements. In most of all examples we obtain significantly better results even with the smallest value of k.

[1]  W. R. Wade The Bounded Convergence Theorem , 1974 .

[2]  C. Floudas Handbook of Test Problems in Local and Global Optimization , 1999 .

[3]  Christodoulos A. Floudas,et al.  A New Class of Improved Convex Underestimators for Twice Continuously Differentiable Constrained NLPs , 2004, J. Glob. Optim..

[4]  Masakazu Muramatsu,et al.  Sums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity , 2004 .

[5]  Nikolaos V. Sahinidis,et al.  Convex extensions and envelopes of lower semi-continuous functions , 2002, Math. Program..

[6]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[7]  Didier Henrion,et al.  GloptiPoly 3: moments, optimization and semidefinite programming , 2007, Optim. Methods Softw..

[8]  Sonia Cafieri,et al.  On convex relaxations of quadrilinear terms , 2010, J. Glob. Optim..

[9]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[10]  Christodoulos A. Floudas,et al.  Tight convex underestimators for $${{\mathcal C}^2}$$-continuous problems: I. univariate functions , 2008, J. Glob. Optim..

[11]  Christodoulos A. Floudas,et al.  αBB: A global optimization method for general constrained nonconvex problems , 1995, J. Glob. Optim..

[12]  Christodoulos A. Floudas,et al.  Tight convex underestimators for $${\mathcal{C}^2}$$ -continuous problems: II. multivariate functions , 2008, J. Glob. Optim..

[13]  Panos M. Pardalos,et al.  Encyclopedia of Optimization , 2006 .

[14]  Christodoulos A. Floudas,et al.  Convex Underestimation of Twice Continuously Differentiable Functions by Piecewise Quadratic Perturbation: Spline αBB Underestimators , 2005, J. Glob. Optim..

[15]  Christodoulos A. Floudas,et al.  Deterministic global optimization - theory, methods and applications , 2010, Nonconvex optimization and its applications.