H.E.S.S. Follow-up Observations of Binary Black Hole Coalescence Events during the Second and Third Gravitational-wave Observing Runs of Advanced LIGO and Advanced Virgo

We report on the observations of four well-localized binary black hole (BBH) mergers by the High Energy Stereoscopic System (H.E.S.S.) during the second and third observing runs of Advanced LIGO and Advanced Virgo, O2 and O3. H.E.S.S. can observe 20 deg2 of the sky at a time and follows up gravitational-wave (GW) events by “tiling” localization regions to maximize the covered localization probability. During O2 and O3, H.E.S.S. observed large portions of the localization regions, between 35% and 75%, for four BBH mergers (GW170814, GW190512_180714, GW190728_064510, and S200224ca). For these four GW events, we find no significant signal from a pointlike source in any of the observations, and we set upper limits on the very high energy (>100 GeV) γ-ray emission. The 1–10 TeV isotropic luminosity of these GW events is below 1045 erg s−1 at the times of the H.E.S.S. observations, around the level of the low-luminosity GRB 190829A. Assuming no changes are made to how follow-up observations are conducted, H.E.S.S. can expect to observe over 60 GW events per year in the fourth GW observing run, O4, of which eight would be observable with minimal latency.

T. Bulik | U. Katz | E. Moulin | T. Tanaka | T. Lohse | A. Quirrenbach | T. Takahashi | R. Brose | M. Renaud | T. Holch | R. Parsons | A. Mitchell | S. Ohm | H. Abdalla | D. Kostunin | J. Vink | W. Hofmann | Michael Backes | V. Poireau | F. Aharonian | S. Fegan | K. Kosack | Y. Becherini | J. Ernenwein | F. Schüssler | A. Santangelo | G. Maurin | S. Gabici | S. Wagner | L. Mohrmann | A. Kundu | M. Panter | E. Angüner | K. Bernlöhr | C. Boisson | J. Bolmont | S. Casanova | G. Cotter | A. Djannati-Ataï | K. Egberts | A. Fiasson | G. Giavitto | J. Glicenstein | J. Hinton | M. Jamrozy | B. Khélifi | N. Komin | G. Lamanna | J. Lenain | J. Niemiec | M. Ostrowski | H. Prokoph | G. Pühlhofer | M. Punch | F. Rieger | B. Rudak | V. Sahakian | U. Schwanke | H. Sol | R. Terrier | A. Wierzcholska | M. Zacharias | A. Zech | G. Fontaine | P. Marchegiani | J. Devin | M. Lemoine-Goumard | L. Giunti | A. Sinha | E. de Oña Wilhelmi | G. Rowell | F. Brun | V. Marandon | M. Sasaki | S. Funk | A. Nayerhoda | E. Ruiz-Velasco | V. Baghmanyan | Zhiqiu Huang | A. Luashvili | J. Mackey | J. Majumdar | D. Malyshev | T. Murach | A. Specovius | S. Spencer | Ł. Stawarz | S. Steinmassl | Y. Wong | D. Zargaryan | H. Ashkar | B. Bi | S. Caroff | T. Chand | D. Glawion | M. Grondin | M. Holler | D. Huber | F. Jankowsky | I. Jung-Richardt | E. Kasai | K. Katarzy'nski | R. Konno | A. Lemière | I. Lypova | G. Mart'i-Devesa | R. Marx | P. Meintjes | L. Olivera-Nieto | G. Peron | D. Prokhorov | P. Reichherzer | S. Sailer | H. Schutte | M. Senniappan | L. Sun | C. Steppa | M. Tsirou | J. Veh | F. Werner | S. Zouari | N. Żywucka | M. de Naurois | C. van Eldik | F. Cangemi | M. Böttcher | A. Chen | N. Tsuji | A. Zdziarski | T. Bylund | F. Leuschner | P. O’Brien | H. Salzmann | J. Shapopi | R. Batzofin | M. Hörbe | F. Ait Benkhali | V. Barbosa Martins | G. Martí-Devesa | A. Priyana Noel | C. Thorpe-Morgan | M. de Bony de Lavergne | J. Damascene Mbarubucyeye | G. Fichet de Clairfontaine | S. Le Stum | H. Rueda Ricarte | D. Berge | Y. Uchiyama | D. Sanchez | R. White | J. Muller | A. Montanari | S. J. Zhu | S. J. Zhu | R. White | S. Wagner

[1]  M. J. Williams,et al.  Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences , 2021 .

[2]  H. Collaboration Revealing x-ray and gamma ray temporal and spectral similarities in the GRB 190829A afterglow , 2021, 2106.02510.

[3]  R. Magee,et al.  First Demonstration of Early Warning Gravitational-wave Alerts , 2021, The Astrophysical Journal Letters.

[4]  M. Seglar-Arroyo,et al.  The H.E.S.S. gravitational wave rapid follow-up program , 2020, Journal of Cosmology and Astroparticle Physics.

[5]  B. A. Boom,et al.  Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2020, Living reviews in relativity.

[6]  Marlin B. Schäfer,et al.  Gravitational-wave Merger Forecasting: Scenarios for the Early Detection and Localization of Compact-binary Mergers with Ground-based Observatories , 2020, The Astrophysical Journal.

[7]  R. Magee,et al.  An Early-warning System for Electromagnetic Follow-up of Gravitational-wave Events , 2020, The Astrophysical Journal Letters.

[8]  F. Foucart A Brief Overview of Black Hole-Neutron Star Mergers , 2020, Frontiers in Astronomy and Space Sciences.

[9]  T. Sakamoto,et al.  A thousand days after the merger: Continued X-ray emission from GW170817 , 2020, Monthly Notices of the Royal Astronomical Society.

[10]  T. Bulik,et al.  Probing the Magnetic Field in the GW170817 Outflow Using H.E.S.S. Observations , 2020, The Astrophysical Journal.

[11]  Iair Arcavi,et al.  The Gravitational Wave Treasure Map: A Tool to Coordinate, Visualize, and Assess the Electromagnetic Follow-up of Gravitational-wave Events , 2020, The Astrophysical Journal.

[12]  Y. N. Liu,et al.  Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).

[13]  A. Quirrenbach,et al.  A very-high-energy component deep in the γ-ray burst afterglow , 2019, Nature.

[14]  D. Costantin,et al.  A Decade of Gamma-Ray Bursts Observed by Fermi-LAT: The Second GRB Catalog , 2019, The Astrophysical Journal.

[15]  Leo Singer,et al.  healpy: equal area pixelization and spherical harmonics transforms for data on the sphere in Python , 2019, J. Open Source Softw..

[16]  W. Farr,et al.  Limits on Electromagnetic Counterparts of Gravitational-wave-detected Binary Black Hole Mergers , 2019, The Astrophysical Journal.

[17]  S. Fairhurst,et al.  Constraining the Inclinations of Binary Mergers from Gravitational-wave Observations , 2018, The Astrophysical Journal.

[18]  A. King,et al.  Circumbinary discs around merging stellar-mass black holes , 2018, Monthly Notices of the Royal Astronomical Society.

[19]  J. Ruan,et al.  Fading of the X-Ray Afterglow of Neutron Star Merger GW170817/GRB 170817A at 260 Days , 2018, The Astrophysical Journal.

[20]  Rafael S. de Souza,et al.  GLADE: A galaxy catalogue for multimessenger searches in the advanced gravitational-wave detector era , 2018, Monthly Notices of the Royal Astronomical Society.

[21]  C. Pankow,et al.  Improvements in Gravitational-wave Sky Localization with Expanded Networks of Interferometers , 2018, 1801.02674.

[22]  P. N. Bhat,et al.  On the Interpretation of the Fermi-GBM Transient Observed in Coincidence with LIGO Gravitational-wave Event GW150914 , 2018, 1801.02305.

[23]  Andrew J. Levan,et al.  The Distance to NGC 4993: The Host Galaxy of the Gravitational-wave Event GW170817 , 2017, 1710.05856.

[24]  M. V. Fernandes,et al.  TeV Gamma-Ray Observations of the Binary Neutron Star Merger GW170817 with H.E.S.S. , 2017, 1710.05862.

[25]  B. Metzger,et al.  Assisted inspirals of stellar mass black holes embedded in AGN discs: solving the ‘final au problem’ , 2016, 1602.04226.

[26]  H. Collaboration The H.E.S.S. Galactic plane survey , 2016, 1804.02432.

[27]  Bing Zhang,et al.  A COMPARATIVE STUDY OF LONG AND SHORT GRBS. I. OVERLAPPING PROPERTIES , 2016, 1608.03383.

[28]  F. Fraschetti Possible role of magnetic reconnection in the electromagnetic counterpart of binary black hole merger , 2016, 1603.01950.

[29]  Bence Kocsis,et al.  Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei , 2016, 1602.03831.

[30]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[31]  J. A. Hinton,et al.  A Monte Carlo template based analysis for air-Cherenkov arrays , 2014, 1403.2993.

[32]  Mathieu de Naurois,et al.  A high performance likelihood reconstruction of γ-rays for imaging atmospheric Cherenkov telescopes , 2009, 0907.2610.

[33]  U. Padova,et al.  Extragalactic optical-infrared background radiation, its time evolution and the cosmic photon-photon opacity , 2008, 0805.1841.

[34]  D. Berge,et al.  Background modelling in very-high-energy gamma-ray astronomy , 2006, astro-ph/0610959.

[35]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[36]  Wolfgang A. Rolke,et al.  Limits and confidence intervals in the presence of nuisance parameters , 2004, physics/0403059.

[37]  Ti-Pei Li,et al.  Analysis methods for results in gamma-ray astronomy , 1983 .