The large world of FET small‐signal equivalent circuits (invited paper)

The small-signal equivalent circuit modeling of microwave field-effect transistors (FETs) is an evergreen and ever flourishing research field that has to be up-to-date with technological developments. Hence, modeling techniques must be continuously adapted and extended to suit best evolving technologies. The extraction of a FET high-frequency small-signal equivalent circuit is a very active and broad research area of significant interest, owing to its use as a prerequisite for noise and large-signal modeling. The aim of this invited article is to provide in-depth knowledge, critical understanding, and new insights into how to extract a FET small-signal equivalent circuit from both theoretical and practical perspectives. To illustrate potential solutions to the key challenges faced by researchers, experimental results for different semiconductor technologies are reported and discussed. The study is focused on the hot research topic of the cold approach that has been, and still is, the most widely used technique for extracting FET small-signal models and on the active role of the transconductance for successful modeling. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2016.

[1]  E. Legros,et al.  Very high-frequency small-signal equivalent circuit for short gate-length InP HEMTs , 1997 .

[2]  T. Fjeldly,et al.  Compact Charge-Based Physical Models for Current and Capacitances in AlGaN/GaN HEMTs , 2013, IEEE Transactions on Electron Devices.

[3]  Lin-Sheng Liu An improved empirical large-signal model for the GaAs- and GaN-based HEMTs , 2011 .

[4]  Herbert Zirath,et al.  Accurate small-signal modeling of HFET's for millimeter-wave applications , 1996 .

[5]  H. Zirath,et al.  A new empirical nonlinear model for HEMT and MESFET devices , 1992 .

[6]  Christian C. Enz,et al.  RF Small-Signal and Noise Modeling Including Parameter Extraction of Nanoscale MOSFET From Weak to Strong Inversion , 2015, IEEE Transactions on Microwave Theory and Techniques.

[7]  Manfred Berroth,et al.  High-frequency equivalent circuit of GaAs FETs for large-signal applications , 1991 .

[8]  Fadhel M. Ghannouchi,et al.  Large-signal modeling methodology for GaN HEMTs for RF switching-mode power amplifiers design , 2011 .

[9]  G. Dambrine,et al.  A new method for determining the FET small-signal equivalent circuit , 1988 .

[10]  Zheng Zhong,et al.  A Novel 4-D Artificial-Neural-Network-Based Hybrid Large-Signal Model of GaAs pHEMTs , 2016, IEEE Transactions on Microwave Theory and Techniques.

[11]  Roberto S. Murphy-Arteaga,et al.  Modeling and parameter extraction of test fixtures for MOSFET on‐wafer measurements up to 60 GHz , 2013 .

[12]  Hermann A. Haus,et al.  Signal and Noise Properties of Gallium Arsenide Microwave Field-Effect-Transistors , 1975 .

[13]  J. Verspecht,et al.  Broad-band poly-harmonic distortion (PHD) behavioral models from fast automated simulations and large-signal vectorial network measurements , 2005, IEEE Transactions on Microwave Theory and Techniques.

[14]  Ruimin Xu,et al.  An improved small‐signal equivalent circuit model for 4H‐SIC power mesfets , 2008 .

[15]  A. Santarelli,et al.  Electron Device Model Parameter Identification Through Large-Signal-Predictive Small-Signal-Based Error Functions , 2007, IEEE Transactions on Microwave Theory and Techniques.

[16]  Paul J. Tasker,et al.  Direct extraction of LDMOS small signal parameters from off-state measurements , 2000 .

[17]  Kubilay Sertel,et al.  Lumped-Element Equivalent-Circuit Modeling of Millimeter-Wave HEMT Parasitics Through Full-Wave Electromagnetic Analysis , 2016, IEEE Transactions on Microwave Theory and Techniques.

[18]  Adelmo Ortiz-Conde,et al.  Modeling the Impact of Multi-Fingering Microwave MOSFETs on the Source and Drain Resistances , 2014, IEEE Transactions on Microwave Theory and Techniques.

[19]  R. A. Minasian,et al.  Simplified GaAs m.e.s.f.e.t. model to 10 GHz , 1977 .

[20]  T. Brazil,et al.  An Improved Small-Signal Parameter-Extraction Algorithm for GaN HEMT Devices , 2008, IEEE Transactions on Microwave Theory and Techniques.

[21]  Jin-Koo Rhee,et al.  Small-signal modeling approach to 0.1-μm metamorphic HEMTs for W-band coplanar MMIC amplifier design , 2012 .

[22]  A. Zarate-de Landa,et al.  Advances in Linear Modeling of Microwave Transistors , 2009, IEEE Microwave Magazine.

[23]  Emanuele Cardillo,et al.  Microwave noise parameter modeling of a GaAs HEMT under optical illumination , 2016 .

[24]  R. S. Pengelly,et al.  A Review of GaN on SiC High Electron-Mobility Power Transistors and MMICs , 2012, IEEE Transactions on Microwave Theory and Techniques.

[25]  Andrei Grebennikov,et al.  High‐efficiency transmission‐line inverse Class F power amplifiers for 2‐GHz WCDMA systems , 2011 .

[26]  Jean-Pierre Colinge,et al.  High-frequency four noise parameters of silicon-on-insulator-based technology MOSFET for the design of low-noise RF integrated circuits , 1999 .

[27]  Dominique Schreurs,et al.  A comprehensive review on microwave FinFET modeling for progressing beyond the state of art , 2013 .

[28]  Giorgio Vannini,et al.  In‐deep insight into the extrinsic capacitance impact on GaN HEMT modeling at millimeter‐wave band , 2012 .

[29]  A. Caddemi,et al.  Accurate Multibias Equivalent-Circuit Extraction for GaN HEMTs , 2006, IEEE Transactions on Microwave Theory and Techniques.

[30]  A. Caddemi,et al.  Scalable and multibias high frequency modeling of multi-fin FETs , 2006 .

[31]  Sedki M. Riad,et al.  Novel technique for estimating metal semiconductor field effect transitor parasitics , 2003 .

[32]  Valeria Vadala,et al.  Behavioral Modeling of GaN FETs: A Load-Line Approach , 2014, IEEE Transactions on Microwave Theory and Techniques.

[33]  Giorgio Vannini,et al.  Straightforward modeling of dynamic I–V characteristics for microwave FETs , 2014 .

[34]  Roberto S. Murphy-Arteaga,et al.  Consistent DC and RF MOSFET Modeling Using an $S$-Parameter Measurement-Based Parameter Extraction Method in the Linear Region , 2015, IEEE Transactions on Microwave Theory and Techniques.

[35]  J.-P. Raskin,et al.  High-Frequency Noise Performance of 60-nm Gate-Length FinFETs , 2008, IEEE Transactions on Electron Devices.

[36]  Jean-Pierre Raskin,et al.  High-temperature DC and RF behaviors of partially-depleted SOI MOSFET transistors , 2008 .

[37]  G. Kompa,et al.  A new small-signal modeling approach applied to GaN devices , 2005, IEEE Transactions on Microwave Theory and Techniques.

[38]  Giorgio Vannini,et al.  Nonlinear modeling of LDMOS transistors for high-power FM transmitters , 2014 .

[39]  Franco Giannini,et al.  Small‐signal and large‐signal modeling of active devices using CAD‐optimized neural networks , 2002 .

[40]  Sam-Dong Kim,et al.  A Gate-Width Scalable Method of Parasitic Parameter Determination for Distributed HEMT Small-Signal Equivalent Circuit , 2013, IEEE Transactions on Microwave Theory and Techniques.

[41]  M. Sudow,et al.  Thermal Study of the High-Frequency Noise in GaN HEMTs , 2009, IEEE Transactions on Microwave Theory and Techniques.

[42]  M. Berroth,et al.  Broad-band determination of the FET small-signal equivalent circuit , 1990 .

[43]  P.M. White,et al.  Improved equivalent circuit for determination of MESFET and HEMT parasitic capacitances from "Coldfet" measurements , 1993, IEEE Microwave and Guided Wave Letters.

[44]  Wooyeol Choi,et al.  Scalable small-signal modeling of RF CMOS FET based on 3-D EM-based extraction of parasitic effects , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.

[45]  Giorgio Vannini,et al.  Accurate closed-form model for computation of conductor loss of coplanar waveguide , 2010 .

[46]  Li Shen,et al.  An improved millimeter-wave small-signal modeling approach for HEMTs , 2014 .

[47]  C. H. Oxley Method for measuring source resistance Rs in saturation region of GaN HEMT device over bias conditions (Vgs,Vds) , 2004 .

[48]  S. Yanagawa,et al.  Analytical method for determining equivalent circuit parameters of GaAs FETs , 1996 .

[49]  Giorgio Vannini,et al.  GaN HEMT noise modeling based on 50‐Ω noise factor , 2015 .

[50]  A. Santarelli,et al.  Scalable Equivalent Circuit FET Model for MMIC Design Identified Through FW-EM Analyses , 2009, IEEE Transactions on Microwave Theory and Techniques.

[51]  Marco Pirola,et al.  Sensitivity‐based optimization and statistical analysis of microwave semiconductor devices through multidimensional physical simulation (invited article) , 1997 .

[52]  J. Benedikt,et al.  Nonlinear Data Utilization: From Direct Data Lookup to Behavioral Modeling , 2009, IEEE Transactions on Microwave Theory and Techniques.

[53]  A. Caddemi,et al.  A New Millimeter-Wave Small-Signal Modeling Approach for pHEMTs Accounting for the Output Conductance Time Delay , 2008, IEEE Transactions on Microwave Theory and Techniques.

[54]  Angelos Antonopoulos,et al.  Open-source circuit simulation tools for RF compact semiconductor device modelling , 2014 .

[55]  E. Vandamme,et al.  Improved three-step de-embedding method to accurately account for the influence of pad parasitics in silicon on-wafer RF test-structures , 2001 .

[56]  Sankha Subhra Mukherjee,et al.  A physics‐based model of DC and microwave characteristics of GaN/AlGaN HEMTs , 2007 .

[57]  Ernesto Limiti,et al.  Accurate large-signal equivalent circuit of surface channel diamond FETs based on the Chalmers model , 2012 .

[58]  R. Anholt,et al.  Equivalent-circuit parameter extraction for cold GaAs MESFET's , 1991 .

[59]  Yan Wang,et al.  A new small-signal modeling and extraction method in AlGaN/GaN HEMTs , 2008 .

[60]  Alina Caddemi,et al.  Microwave characterization and modeling of packaged HEMTs by a direct extraction procedure down to 30 K , 2006, IEEE Transactions on Instrumentation and Measurement.

[61]  A. Siligaris,et al.  A new empirical nonlinear model for sub-250 nm channel MOSFET , 2003, IEEE Microwave and Wireless Components Letters.

[62]  J. Wood,et al.  Bias-dependent linear, scalable millimeter-wave FET model , 2000, IMS 2000.

[63]  Shen-Whan Chen,et al.  An accurately scaled small-signal model for interdigitated power P-HEMT up to 50 GHz , 1997 .

[64]  C. Bolognesi,et al.  At-Bias Extraction of Access Parasitic Resistances in AlGaN/GaN HEMTs: Impact on Device Linearity and Channel Electron Velocity , 2006, IEEE Transactions on Electron Devices.

[65]  William Hughes,et al.  High School General Music — Another Perspective , 1988 .

[66]  J. R. Loo‐Yau,et al.  An alternative method to extract the parasitic capacitances of GaN FETs , 2015 .

[67]  Antonio Raffo,et al.  Accurate EM-Based Modeling of Cascode FETs , 2010, IEEE Transactions on Microwave Theory and Techniques.

[68]  I. Hunter,et al.  Coupled electrothermal, electromagnetic, and physical modeling of microwave power FETs , 2006, IEEE Transactions on Microwave Theory and Techniques.

[69]  M. J. Deen,et al.  High frequency noise of MOSFETs I Modeling , 1998 .

[70]  Nicole Andrea Evers,et al.  Direct determination of the bias-dependent series parasitic elements in SiC MESFETs , 2003 .

[71]  In Man Kang,et al.  Non-quasi-static small-signal modeling and analytical parameter extraction of SOI FinFETs , 2006 .

[72]  Diego Marti,et al.  Transistor Modeling: Robust Small-Signal Equivalent Circuit Extraction in Various HEMT Technologies , 2013, IEEE Microwave Magazine.

[73]  Jose Carlos Pedro,et al.  Predictable Behavior: Behavioral Modeling from Measured Data , 2014, IEEE Microwave Magazine.

[74]  C. Campbell,et al.  GaN Takes the Lead , 2012, IEEE Microwave Magazine.

[75]  Jin-Koo Rhee,et al.  Millimeter-wave small-signal modeling with optimizing sensitive-parameters for metamorphic high electron mobility transistors , 2010 .

[76]  N.B. Carvalho,et al.  Nonlinear device model of microwave power GaN HEMTs for high power-amplifier design , 2004, IEEE Transactions on Microwave Theory and Techniques.

[77]  Ruimin Xu,et al.  An Electrothermal Model for Empirical Large- Signal Modeling of AlGaN/GaN HEMTs Including Self-Heating and Ambient Temperature Effects , 2014, IEEE Transactions on Microwave Theory and Techniques.

[78]  C. M. Snowden,et al.  MICROWAVE AND MILLIMETER-WAVE DEVICE AND CIRCUIT-DESIGN BASED ON PHYSICAL MODELING , 1991 .

[79]  Mohammad Abdul Alim,et al.  Temperature-Dependent DC and Small-Signal Analysis of AlGaAs/InGaAs pHEMT for High-Frequency Applications , 2016, IEEE Transactions on Electron Devices.

[80]  Anwar Jarndal AlGaN/GaN HEMTs on SiC and Si substrates: A review from the small-signal-modeling's perspective , 2014 .

[81]  Zlatica Marinkovic,et al.  Temperature-dependent models of low-noise microwave transistors based on neural networks , 2005 .

[82]  Dominique Schreurs,et al.  Construction of behavioral models for microwave devices from time domain large-signal measurements to speed up high-level design simulations , 2003 .

[83]  M. Pospieszalski Modeling of noise parameters of MESFETs and MODFETs and their frequency and temperature dependence , 1989 .

[84]  J. H. Qureshi,et al.  LDMOS Technology for RF Power Amplifiers , 2012, IEEE Transactions on Microwave Theory and Techniques.

[85]  Sam-Dong Kim,et al.  Millimeter-Wave Small-Signal Model Using A Coplanar Waveguide De-Embedded Sub-Model for HEMT , 2014, IEEE Microwave and Wireless Components Letters.

[86]  Bo Yan,et al.  A scalable GaN HEMT large-signal model for high-efficiency RF power amplifier design , 2014 .

[87]  Fabrizio Bonani,et al.  Physics-based simulation techniques for small- and large-signal device noise analysis in RF applications , 2003 .

[88]  P. Roblin,et al.  New Trends for the Nonlinear Measurement and Modeling of High-Power RF Transistors and Amplifiers With Memory Effects , 2012, IEEE Transactions on Microwave Theory and Techniques.

[89]  Jean-Pierre Raskin,et al.  Direct extraction of the series equivalent circuit parameters for the small-signal model of SOI MOSFETs , 1997 .

[90]  Valeria Vadala,et al.  Accurate GaN HEMT nonquasi-static large-signal model including dispersive effects , 2011 .