The Pathwidth and Treewidth of Cographs

It is shown that the pathwidth of a cograph equals its treewidth, and a linear time algorithm to determine the pathwidth of a the cograph and build a corresponding path-decomposition is given.

[1]  Rolf H. Möhring,et al.  Graph Problems Related to Gate Matrix Layout and PLA Folding , 1990 .

[2]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[3]  Stefan Arnborg,et al.  Efficient algorithms for combinatorial problems on graphs with bounded decomposability — A survey , 1985, BIT.

[4]  Paul D. Seymour,et al.  Graph minors. I. Excluding a forest , 1983, J. Comb. Theory, Ser. B.

[5]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[6]  M. B. Novick Fast Parallel Algorithms for the Modular Decomposition , 1989 .

[7]  Christos H. Papadimitriou,et al.  Searching and Pebbling , 1986, Theor. Comput. Sci..

[8]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[9]  Hans L. Bodlaender,et al.  Some Classes of Graphs with Bounded Treewidth , 1988, Bull. EATCS.

[10]  Paul D. Seymour,et al.  Graph minors. VI. Disjoint paths across a disc , 1986, J. Comb. Theory, Ser. B.

[11]  Jonathan S. Turner,et al.  GRAPH SEPARATION AND SEARCH NUMBER. , 1987 .

[12]  Lorna Stewart,et al.  A Linear Recognition Algorithm for Cographs , 1985, SIAM J. Comput..

[13]  Hans L. Bodlaender,et al.  Improved Self-reduction Algorithms for Graphs with Bounded Treewidth , 1990, Discret. Appl. Math..

[14]  Derek G. Corneil,et al.  Complement reducible graphs , 1981, Discret. Appl. Math..

[15]  Christos H. Papadimitriou,et al.  Interval graphs and seatching , 1985, Discret. Math..