An optimal-order L2-error estimate for nonsymmetric discontinuous Galerkin methods for a parabolic equation in multiple space dimensions

We analyze the nonsymmetric discontinuous Galerkin methods (NIPG and IIPG) for linear elliptic and parabolic equations with a spatially varied coefficient in multiple spatial dimensions. We consider d-linear approximation spaces on a uniform rectangular mesh, but our results can be extended to smoothly varying rectangular meshes. Using a blending or Boolean interpolation, we obtain a superconvergence error estimate in a discrete energy norm and an optimal-order error estimate in a semi-discrete norm for the parabolic equation. The L 2 -optimality for the elliptic problem follows directly from the parabolic estimates. Numerical results are provided to validate our theoretical estimates. We also discuss the impact of penalty parameters on convergence behaviors of NIPG.

[1]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[2]  Boolean methods in interpolation and approximation , 1991 .

[3]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[4]  Mary F. Wheeler,et al.  Symmetric and Nonsymmetric Discontinuous Galerkin Methods for Reactive Transport in Porous Media , 2005, SIAM J. Numer. Anal..

[5]  Mary F. Wheeler,et al.  Discontinuous Galerkin Method for Modeling Flow and Reactive Transport in Porous Media , 2003 .

[6]  Mats G. Larson,et al.  Analysis of a Nonsymmetric Discontinuous Galerkin Method for Elliptic Problems: Stability and Energy Error Estimates , 2004, SIAM J. Numer. Anal..

[7]  M. Wheeler,et al.  Discontinuous Galerkin methods for coupled flow and reactive transport problems , 2005 .

[8]  Shuyu Sun,et al.  Discontinuous Galerkin methods for reactive transport in porous media , 2003 .

[9]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[10]  Wolfgang L. Wendland,et al.  Analysis and Simulation of Multifield Problems , 2003 .

[11]  Mary F. Wheeler,et al.  Compatible algorithms for coupled flow and transport , 2004 .

[12]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[13]  Mary F. Wheeler,et al.  A Priori Error Estimates for Finite Element Methods Based on Discontinuous Approximation Spaces for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[14]  B. Rivière,et al.  A Combined Mixed Finite Element and Discontinuous Galerkin Method for Miscible Displacement Problem in Porous Media , 2002 .

[15]  Mary F. Wheeler,et al.  A DYNAMIC, ADAPTIVE, LOCALLY CONSERVATIVE, AND NONCONFORMING SOLUTION STRATEGY FOR TRANSPORT PHENOMENA IN CHEMICAL ENGINEERING , 2004 .

[16]  Hongsen Chen,et al.  SUPERCONVERGENCE PROPERTIES OF DISCONTINUOUS GALERKIN METHODS FOR TWO-POINT BOUNDARY VALUE PROBLEMS , 2006 .

[17]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[18]  Zhangxin Chen,et al.  Pointwise Error Estimates of Discontinuous Galerkin Methods with Penalty for Second-Order Elliptic Problems , 2004, SIAM J. Numer. Anal..

[19]  M. Wheeler,et al.  Anisotropic and dynamic mesh adaptation for discontinuous Galerkin methods applied to reactive transport , 2006 .

[20]  George Em Karniadakis,et al.  The Development of Discontinuous Galerkin Methods , 2000 .

[21]  Kenneth Eriksson,et al.  Time discretization of parabolic problems by the discontinuous Galerkin method , 1985 .

[22]  Mats G. Larson,et al.  Analysis of a family of discontinuous Galerkin methods for elliptic problems: the one dimensional case , 2004, Numerische Mathematik.

[23]  Andrea Toselli,et al.  Stabilized hp-DGFEM for Incompressible Flow , 2003 .

[24]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[25]  Ohannes A. Karakashian,et al.  A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[26]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .