Some preliminary results on a high order asymptotic preserving computationally explicit kinetic scheme

In this short paper, we intend to describe one way to construct arbitrarily high order kinetic schemes on regular meshes. The method can be arbitrarily high order in space and time, run at least CFL one, is asymptotic preserving and computationally explicit, i.e., the computational costs are of the same order of a fully explicit scheme. We also introduce a non linear stability method that enables to simulate problems with discontinuities, and it does not kill the accuracy for smooth regular solutions.

[1]  R. Abgrall,et al.  High Order Schemes for Hyperbolic Problems Using Globally Continuous Approximation and Avoiding Mass Matrices , 2017, J. Sci. Comput..

[2]  H. Joachim Schroll High Resolution Relaxed Upwind Schemes in Gas Dynamics , 2002, J. Sci. Comput..

[3]  D. Coulette,et al.  High-order implicit palindromic discontinuous Galerkin method for kinetic-relaxation approximation , 2018, Computers & Fluids.

[4]  Giovanni Samaey,et al.  A high-order relaxation method with projective integration for solving nonlinear systems of hyperbolic conservation laws , 2014, J. Comput. Phys..

[5]  Gabriella Puppo,et al.  Implicit–Explicit Schemes for BGK Kinetic Equations , 2007, J. Sci. Comput..

[6]  B. Perthame,et al.  Numerical passage from kinetic to fluid equations , 1991 .

[7]  Dmitri Kuzmin,et al.  A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin methods , 2010, J. Comput. Appl. Math..

[8]  B. Leer,et al.  Flux-vector splitting for the Euler equations , 1997 .

[9]  M. Banda,et al.  Relaxation WENO schemes for multidimensional hyperbolic systems of conservation laws , 2007 .

[10]  Z. Xin,et al.  The relaxation schemes for systems of conservation laws in arbitrary space dimensions , 1995 .

[11]  Steven J. Ruuth,et al.  A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..

[12]  Tao Xiong,et al.  Conservative Multi-dimensional Semi-Lagrangian Finite Difference Scheme: Stability and Applications to the Kinetic and Fluid Simulations , 2019, J. Sci. Comput..

[13]  Rémi Abgrall,et al.  High Order Asymptotic Preserving Deferred Correction Implicit-Explicit Schemes for Kinetic Models , 2020, SIAM J. Sci. Comput..

[14]  Stéphane Clain,et al.  A high-order finite volume method for systems of conservation laws - Multi-dimensional Optimal Order Detection (MOOD) , 2011, J. Comput. Phys..

[15]  François Vilar,et al.  A posteriori correction of high-order discontinuous Galerkin scheme through subcell finite volume formulation and flux reconstruction , 2019, J. Comput. Phys..

[16]  F. Bouchut Construction of BGK Models with a Family of Kinetic Entropies for a Given System of Conservation Laws , 1999 .

[17]  R. Natalini A Discrete Kinetic Approximation of Entropy Solutions to Multidimensional Scalar Conservation Laws , 1998 .

[18]  Lorenzo Pareschi,et al.  Implicit-Explicit Runge-Kutta Schemes for Hyperbolic Systems and Kinetic Equations in the Diffusion Limit , 2013, SIAM J. Sci. Comput..

[19]  M. Minion Semi-implicit spectral deferred correction methods for ordinary differential equations , 2003 .

[20]  E. Hairer,et al.  Stiff and differential-algebraic problems , 1991 .

[21]  Roberto Natalini,et al.  Discrete Kinetic Schemes for Multidimensional Systems of Conservation Laws , 2000, SIAM J. Numer. Anal..

[22]  A. Iserles Order Stars and a Saturation Theorem for First-order Hyperbolics , 1982 .