The complete-basis-functions parameterization in ES and its application to laser pulse shaping

This paper presents a new parameterization method for the Evolution Strategies (ES) field, and its application to a challenging real-life high-dimensional Physics optimization problem, namely Femtosecond Laser Pulse Shaping. The so-called Complete-Basis-Functions Parameterization method (CBFP), to be introduced here for the first time, is developed for tackling efficiently the given laser optimization task, but nevertheless is a general method that can be used for learning any n-variables functions. The emphasis is on dimensionality reduction of the search space and the speeding-up of the convergence process respectively. This is achieved by learning the target function by using complete-basis functions as building blocks in an evolutionary search. The method is shown to boost the learning process of the given laser problem, and to yield highly satisfying results.

[1]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[2]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[3]  David B. Fogel,et al.  Evolutionary algorithms in theory and practice , 1997, Complex.

[4]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[5]  Kwong-Sak Leung,et al.  Evolution Strategies with a Fourier Series Auxiliary Function for Difficult Function Optimization , 2003, IDEAL.

[6]  John Holland,et al.  Adaptation in Natural and Artificial Sys-tems: An Introductory Analysis with Applications to Biology , 1975 .

[7]  Tunc Geveci,et al.  Advanced Calculus , 2014, Nature.

[8]  M. Vrakking,et al.  Revival structures in picosecond laser-induced alignment of I2 molecules. I. Experimental results , 2002 .

[9]  M. Vrakking,et al.  Revival structures in picosecond laser-induced alignment of I2 molecules. II. Numerical modeling , 2002 .

[10]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[11]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[12]  Hans-Paul Schwefel,et al.  Evolution and Optimum Seeking: The Sixth Generation , 1993 .

[13]  Lawrence J. Fogel,et al.  Intelligence Through Simulated Evolution: Forty Years of Evolutionary Programming , 1999 .

[14]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[15]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[16]  Hans-Paul Schwefel,et al.  Evolutionary Programming and Evolution Strategies: Similarities and Differences , 1993 .

[17]  Ofer M. Shir,et al.  Niching in Evolution Strategies and Its Application to Laser Pulse Shaping , 2005, Artificial Evolution.