Simulations of Polarimetric, X-Band Radar Signatures in Supercells. Part II: ZDR Columns and Rings and KDP Columns

AbstractA high-resolution numerical model and polarimetric forward operator allow one to examine simulated convective storms from the perspective of observable polarimetric radar quantities, enabling a better comparison of modeled and observed deep moist convection. Part I of this two-part study described the model and forward operator used for all simulations and examined the structure and evolution of rings of reduced copolar cross-correlation coefficient (i.e., ρhv rings). The microphysical structure of upward extensions of enhanced differential reflectivity (ZDR columns and ZDR rings) and enhanced specific differential phase (KDP columns) near and within the updrafts of convective storms serve as the focus of this paper. In general, simulated ZDR columns are located immediately west of the midlevel updraft maximum and are associated with rainwater lofted above the 0°C level and wet hail/graupel, whereas ZDR rings are associated with wet hail located near and immediately east of the midlevel updraft ma...

[1]  A. Ryzhkov,et al.  Theory of Time-Dependent Freezing. Part II: Scheme for Freezing Raindrops and Simulations by a Cloud Model with Spectral Bin Microphysics , 2015 .

[2]  Jerry M. Straka,et al.  Bulk Hydrometeor Classification and Quantification Using Polarimetric Radar Data: Synthesis of Relations , 2000 .

[3]  D. Atlas,et al.  MULTI-WAVELENGTH RADAR REFLECTIVITY OF HAILSTORMS , 1961 .

[4]  W. Cotton Numerical Simulation of Precipitation Development in Supercooled Cumuli—Part II , 1972 .

[5]  C. Kessinger,et al.  A Study of Thunderstorm Microphysics with Multiparameter Radar and Aircraft Observations , 1995 .

[6]  Patrick C. Kennedy,et al.  S-Band Dual-Polarization Radar Observations of Winter Storms , 2011 .

[7]  W. D. Rust,et al.  Polarimetric and Electrical Characteristics of a Lightning Ring in a Supercell Storm , 2010 .

[8]  Conrad L. Ziegler,et al.  Retrieval of Thermal and Microphysical Variables in Observed Convective Storms. , 1985 .

[9]  Jerry M. Straka,et al.  Enhanced polarimetric radar signatures above the melting level in a supercell storm , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[10]  Stephen J. Frasier,et al.  Observations of Polarimetric Signatures in Supercells by an X-Band Mobile Doppler Radar , 2013 .

[11]  Matthew R. Kumjian,et al.  The Impact of Vertical Wind Shear on Hail Growth in Simulated Supercells , 2017 .

[12]  E. McCaul,et al.  Variability of Updraft and Downdraft Characteristics in a Large Parameter Space Study of Convective Storms , 2009 .

[13]  Nancy C. Knight,et al.  The Falling Behavior of Hailstones , 1970 .

[14]  Erik N. Rasmussen,et al.  Toward Improving Microphysical Parameterizations of Conversion Processes , 1997 .

[15]  Pavlos Kollias,et al.  On polarimetric radar signatures of deep convection for model evaluation: columns of specific differential phase observed during MC3E. , 2016, Monthly weather review.

[16]  A. Ryzhkov,et al.  Polarimetry for Weather Surveillance Radars , 1999 .

[17]  Joseph C. Picca Z DR columns as a predictive tool for hail growth and storm evolution , 2010 .

[18]  J. W. F. Goddard,et al.  Identification of hydrometeors and other targets by dual‐polarization radar , 1984 .

[19]  Jerry M. Straka,et al.  Enhanced polarimetric radar signatures above the melting level in a supercell storm , 2002 .

[20]  D. Heimann,et al.  A Squall Line in Southern Germany: Kinematics and Precipitation Formation as Deduced by Advanced Polarimetric and Doppler Radar Measurements , 1991 .

[21]  Alexander V. Ryzhkov,et al.  Advantages of Rain Measurements Using Specific Differential Phase , 1996 .

[22]  V. N. Bringi,et al.  Multiparameter Radar and Aircraft Study of Raindrop Spectral Evolution in Warm-based Clouds , 1991 .

[23]  Matthew R. Kumjian,et al.  Principles and applications of dual-polarization weather radar. Part II: Warm- and cold-season applications , 2013 .

[24]  W. Cotton,et al.  Storm and Cloud Dynamics , 1992 .

[25]  Jacques Testud,et al.  The Rain Profiling Algorithm Applied to Polarimetric Weather Radar , 2000 .

[26]  Guifu Zhang,et al.  Simulations of Polarimetric Radar Signatures of a Supercell Storm Using a Two-Moment Bulk Microphysics Scheme , 2010 .

[27]  Jerry M. Straka,et al.  Cloud and Precipitation Microphysics: Principles and Parameterizations , 2009 .

[28]  M. Yau,et al.  A Multimoment Bulk Microphysics Parameterization. Part II: A Proposed Three-Moment Closure and Scheme Description , 2005 .

[29]  D. J. Musil,et al.  Observations of Mixed-Phase Precipitation within a CaPE Thunderstorm , 1999 .

[30]  William R. COTTON-Experimental Numerical Simulation of Precipitation Development in Supercooled Cumuli-Part I , 1972 .

[31]  H. Brooks,et al.  Hodograph Curvature and Updraft Intensity in Numerically Modeled Supercells , 1993 .

[32]  Jerry M. Straka,et al.  A Summary of Convective-Core Vertical Velocity Properties Using ARM UHF Wind Profilers in Oklahoma , 2013 .

[33]  D. Atlas,et al.  Radar scatter by large hail , 1960 .

[34]  Daniel T. Dawson,et al.  Simulations of Polarimetric, X-Band Radar Signatures in Supercells. Part I: Description of Experiment and Simulated ρhv Rings , 2017 .

[35]  Jerry M. Straka,et al.  Testing a Procedure for Automatic Classification of Hydrometeor Types , 2001 .

[36]  Guifu Zhang,et al.  Attenuation Correction and Hydrometeor Classification of High-Resolution, X-band, Dual-Polarized Mobile Radar Measurements in Severe Convective Storms , 2009 .

[37]  V. Chandrasekar,et al.  Dual multiparameter radar observations of intense convective storms: The 24 June 1992 case study , 1996 .

[38]  A. Ryzhkov,et al.  Freezing of Raindrops in Deep Convective Updrafts: A Microphysical and Polarimetric Model , 2012 .

[39]  D. A. Johnson,et al.  Freezing and shattering of supercooled water drops , 1968 .

[40]  D. J. Musil,et al.  Structure of an Evolving Hailstorm Part IV: Internal Structure from Penetrating Aircraft , 1976 .

[41]  A. Khain,et al.  Theory of Time-Dependent Freezing. Part I: Description of Scheme for Wet Growth of Hail , 2014 .

[42]  Alexander V. Ryzhkov,et al.  Use of X-Band Differential Reflectivity Measurements to Study Shallow Arctic Mixed-Phase Clouds , 2016 .

[43]  J. W. Conway,et al.  A Study of Embryo Production and Hail Growth Using Dual-Doppler and Multiparameter Radars , 1993 .

[44]  Alexander V. Ryzhkov,et al.  Polarimetric Signatures in Supercell Thunderstorms , 2008 .

[45]  A. Ryzhkov,et al.  Effect of Aerosols on Freezing Drops, Hail, and Precipitation in a Midlatitude Storm , 2016 .

[46]  Alexander V. Ryzhkov,et al.  Rapid-Scan Super-Resolution Observations of a Cyclic Supercell with a Dual-Polarization WSR-88D , 2010 .

[47]  W. Petersen,et al.  Polarimetric Radar Observations of Hail Formation , 2001 .

[48]  Alexander Khain,et al.  The Anatomy and Physics of Z(DR) Columns: Investigating a Polarimetric Radar Signature with a Spectral Bin Microphysical Model , 2014 .

[49]  P. Wilson Supercooling of Water , 2012 .

[50]  V. N. Bringi,et al.  Multiparameter Radar Study of a Microburst: Comparison with Model Results , 1989 .

[51]  Lawrence D. Carey,et al.  CSU-CHILL polarimetric radar measurements from a severe hail storm in eastern Colorado , 1998 .

[52]  John Hubbert,et al.  Life Cycle and Precipitation Formation in a Hybrid-Type Hailstorm Revealed by Polarimetric and Doppler Radar Measurements , 1994 .

[53]  A. Chisholm Alberta Hailstorms Part I: Radar Case Studies and Airflow Models , 1973 .

[54]  V. Chandrasekar,et al.  A Dual-Polarization Radar Hydrometeor Classification Algorithm for Winter Precipitation , 2014 .

[55]  Brenda Dolan,et al.  A Theory-Based Hydrometeor Identification Algorithm for X-Band Polarimetric Radars , 2009 .

[56]  Eric C. Bruning,et al.  Simulated Electrification of a Small Thunderstorm with Two-Moment Bulk Microphysics , 2010 .

[57]  H. Pruppacher,et al.  A wind tunnel investigation of freezing of small water drops falling at terminal velocity in air , 1973 .

[58]  M. Kumjian,et al.  Microphysical Characteristics of Overshooting Convection from Polarimetric Radar Observations , 2015 .

[59]  D. S. Zrnic,et al.  Differential propagation phase shift and rainfall rate estimation , 1986 .

[60]  J. B. Mead,et al.  A Mobile Rapid-Scanning X-band Polarimetric (RaXPol) Doppler Radar System , 2013 .

[61]  D. Burgess,et al.  A Dual-Polarization-Radar-Based Assessment of the 8 May 2003 Oklahoma City Area Tornadic Supercell , 2008 .

[62]  Louis J. Wicker,et al.  Low-LevelZDRSignatures in Supercell Forward Flanks: The Role of Size Sorting and Melting of Hail , 2014 .

[63]  V. N. Bringi,et al.  Evolution of a Florida Thunderstorm during the Convection and Precipitation/Electrification Experiment: The Case of 9 August 1991 , 1997 .

[64]  A. Illingworth,et al.  Polarization radar studies of precipitation development in convective storms , 1987 .

[65]  A. Ryzhkov,et al.  A ZDR Column Detection Algorithm to Examine Convective Storm Updrafts , 2015 .

[66]  L. Donner,et al.  Nucleation processes in deep convection simulated by a cloud-system-resolving model with double-moment bulk microphysics , 2007 .