Bringing Order to Chaos: The Case of Collision-Resistant Chameleon-Hashes

Chameleon-hash functions, introduced by Krawczyk and Rabin at NDSS 2000, are trapdoor collision-resistant hash-functions parametrized by a public key. If the corresponding secret key is known, arbitrary collisions for the hash function can be efficiently found. Chameleon-hash functions have prominent applications in the design of cryptographic primitives, such as lifting non-adaptively secure signatures to adaptively secure ones. Recently, this primitive also received a lot of attention as a building block in more complex cryptographic applications ranging from editable blockchains to advanced signature and encryption schemes.

[1]  Ryo Nishimaki,et al.  Tagged One-Time Signatures: Tight Security and Optimal Tag Size , 2013, Public Key Cryptography.

[2]  Daniel Slamanig,et al.  Policy-Based Sanitizable Signatures , 2020, IACR Cryptol. ePrint Arch..

[3]  Rui Zhang,et al.  Tweaking TBE/IBE to PKE Transforms with Chameleon Hash Functions , 2007, ACNS.

[4]  Giuseppe Ateniese,et al.  Redactable Blockchain – or – Rewriting History in Bitcoin and Friends , 2017, 2017 IEEE European Symposium on Security and Privacy (EuroS&P).

[5]  Daniel Slamanig,et al.  Highly-Efficient Fully-Anonymous Dynamic Group Signatures , 2018, AsiaCCS.

[6]  Jens Groth,et al.  Efficient Fully Structure-Preserving Signatures for Large Messages , 2015, IACR Cryptol. ePrint Arch..

[7]  Ron Steinfeld,et al.  Efficient Extension of Standard Schnorr/RSA Signatures into Universal Designated-Verifier Signatures , 2004, Public Key Cryptography.

[8]  Giannis Tziakouris,et al.  Cryptocurrencies—A Forensic Challenge or Opportunity for Law Enforcement? An INTERPOL Perspective , 2018, IEEE Security & Privacy.

[9]  Giuseppe Ateniese,et al.  On the Key Exposure Problem in Chameleon Hashes , 2004, SCN.

[10]  Florian Volk,et al.  Security of Sanitizable Signatures Revisited , 2009, Public Key Cryptography.

[11]  Song Guo,et al.  Chameleon Hashing for Secure and Privacy-Preserving Vehicular Communications , 2014, IEEE Transactions on Parallel and Distributed Systems.

[12]  Silvio Micali,et al.  Public-Key Encryption in a Multi-user Setting: Security Proofs and Improvements , 2000, EUROCRYPT.

[13]  Klaus Wehrle,et al.  A Quantitative Analysis of the Impact of Arbitrary Blockchain Content on Bitcoin , 2018, Financial Cryptography.

[14]  Yunlei Zhao,et al.  Hierarchical Identity-Based Chameleon Hash and Its Applications , 2011, ACNS.

[15]  Kwangjo Kim,et al.  Chameleon Hashing Without Key Exposure , 2004, ISC.

[16]  Amit Sahai,et al.  Efficient Non-interactive Proof Systems for Bilinear Groups , 2008, EUROCRYPT.

[17]  Bernardo Magri,et al.  Redactable Blockchain in the Permissionless Setting , 2019, 2019 IEEE Symposium on Security and Privacy (SP).

[18]  Mihir Bellare,et al.  Hash Functions from Sigma Protocols and Improvements to VSH , 2008, ASIACRYPT.

[19]  Ronald Cramer,et al.  A Practical Public Key Cryptosystem Provably Secure Against Adaptive Chosen Ciphertext Attack , 1998, CRYPTO.

[20]  Chanathip Namprempre,et al.  The One-More-RSA-Inversion Problems and the Security of Chaum's Blind Signature Scheme , 2003, Journal of Cryptology.

[21]  David Chaum,et al.  Minimum Disclosure Proofs of Knowledge , 1988, J. Comput. Syst. Sci..

[22]  Payman Mohassel,et al.  One-Time Signatures and Chameleon Hash Functions , 2010, Selected Areas in Cryptography.

[23]  Daniel Slamanig,et al.  Chameleon-Hashes with Ephemeral Trapdoors And Applications to Invisible Sanitizable Signatures , 2017, IACR Cryptol. ePrint Arch..

[24]  Gene Tsudik,et al.  Sanitizable Signatures , 2005, ESORICS.

[25]  Toshiaki Tanaka,et al.  On the Existence of 3-Round Zero-Knowledge Protocols , 1998, CRYPTO.

[26]  Souhwan Jung,et al.  A handover authentication using credentials based on chameleon hashing , 2010, IEEE Communications Letters.

[27]  Yael Tauman Kalai,et al.  Improved Online/Offline Signature Schemes , 2001, CRYPTO.

[28]  Jens Groth,et al.  Simulation-Sound NIZK Proofs for a Practical Language and Constant Size Group Signatures , 2006, ASIACRYPT.

[29]  Willy Susilo,et al.  Efficient chameleon hash functions in the enhanced collision resistant model , 2020, Inf. Sci..

[30]  Ron Steinfeld,et al.  Universal Designated-Verifier Signatures , 2003, ASIACRYPT.

[31]  Amos Fiat,et al.  How to Prove Yourself: Practical Solutions to Identification and Signature Problems , 1986, CRYPTO.

[32]  Silvio Micali,et al.  On-line/off-line digital signatures , 1996, Journal of Cryptology.

[33]  Eike Kiltz,et al.  Tightly-Secure Signatures from Chameleon Hash Functions , 2015, Public Key Cryptography.

[34]  Taher ElGamal,et al.  A public key cyryptosystem and signature scheme based on discrete logarithms , 1985 .

[35]  Daniel Slamanig,et al.  Key-homomorphic signatures: definitions and applications to multiparty signatures and non-interactive zero-knowledge , 2018, Designs, Codes and Cryptography.

[36]  Torben P. Pedersen Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing , 1991, CRYPTO.

[37]  Ivan Damgård,et al.  Proofs of Partial Knowledge and Simplified Design of Witness Hiding Protocols , 1994, CRYPTO.

[38]  Yevgeniy Dodis,et al.  Efficient Public-Key Cryptography in the Presence of Key Leakage , 2010, ASIACRYPT.

[39]  Stefan Katzenbeisser,et al.  Group-Based Attestation: Enhancing Privacy and Management in Remote Attestation , 2010, TRUST.

[40]  Markulf Kohlweiss,et al.  On the Non-malleability of the Fiat-Shamir Transform , 2012, INDOCRYPT.

[41]  Giuseppe Ateniese,et al.  Identity-Based Chameleon Hash and Applications , 2004, Financial Cryptography.

[42]  Brent Waters,et al.  Short and Stateless Signatures from the RSA Assumption , 2009, CRYPTO.

[43]  Daniel Slamanig,et al.  Fine-Grained and Controlled Rewriting in Blockchains: Chameleon-Hashing Gone Attribute-Based , 2019, NDSS.

[44]  Mihir Bellare,et al.  A Characterization of Chameleon Hash Functions and New, Efficient Designs , 2014, Journal of Cryptology.

[45]  Yi Mu,et al.  Efficient Generic On-Line/Off-Line Signatures Without Key Exposure , 2007, ACNS.