Mixed finite element beam propagation method

An efficient mixed finite element (FE) beam propagation method (BPM) for three-dimensional (3-D) simulations is developed for integrated optic devices. Wide angle propagation is allowed by applying Pade approximants to the finite element operator. Mixed finite elements prevent spurious modes and accurately model waveguide corners allowing the adequate description of polarization effects. Furthermore, the finite element matrices are Hermitian leading to a unitary propagation scheme if lossless waveguides surrounded by metallic walls are assumed. In contrast to finite difference schemes energy conservation holds explicitly.

[1]  J. B. Davies,et al.  Finite element/finite difference propagation algorithm for integrated optical device , 1989 .

[2]  Youngchul Chung,et al.  An assessment of finite difference beam propagation method , 1990 .

[3]  Masanori Koshiba,et al.  A vector finite element method with the high-order mixed-interpolation-type triangular elements for optical waveguiding problems , 1994 .

[4]  Ramu V. Ramaswamy,et al.  Modeling of graded-index channel waveguides using nonuniform finite difference method , 1989 .

[5]  W. B. Bridges,et al.  Computer Analysis of Dielectric Waveguides: A Finite-Difference Method , 1984 .

[6]  G. R. Hadley,et al.  Transparent boundary condition for the beam propagation method , 1992 .

[7]  G. R. Hadley,et al.  Wide-angle beam propagation using Pade approximant operators. , 1992, Optics letters.

[8]  B. M. Dillon,et al.  A comparison of formulations for the vector finite element analysis of waveguides , 1994 .

[9]  Edgar Voges,et al.  Three-dimensional semi-vectorial wide-angle beam propagation method , 1994 .

[10]  Masanori Koshiba,et al.  A wide-angle beam propagation method based on a finite element scheme , 1997 .

[11]  B. Hermansson,et al.  Efficient beam propagation techniques , 1990 .

[12]  H. Frankena,et al.  Application of a fully vectorial beam propagation method , 1997 .

[13]  W. Bardyszewski,et al.  Stability issues in vector electric field propagation , 1995, IEEE Photonics Technology Letters.

[14]  D. Yevick,et al.  A guide to electric field propagation techniques for guided-wave optics , 1994 .

[15]  M. S. Stern Semivectorial polarised H˜ field solutions for dielectric waveguides with arbitrary index profiles , 1988 .

[16]  R. M. de Ridder,et al.  Efficient interface conditions for the semi-vectorial finite-difference beam propagation method , 1995 .

[17]  Wei-Ping Huang,et al.  The finite-difference vector beam propagation method: analysis and assessment , 1992 .

[18]  Masanori Koshiba,et al.  A finite element beam propagation method for strongly guiding and longitudinally varying optical waveguides , 1996 .

[19]  Hung-Chun Chang,et al.  Three-dimensional noniterative full-vectorial beam propagation method based on the alternating direction implicit method , 1999 .

[20]  Youngchul Chung,et al.  Analysis of Z-invariant and Z-variant semiconductor rib waveguides by explicit finite difference beam propagation method with nonuniform mesh configuration , 1991 .

[21]  Masanori Koshiba,et al.  Simple and efficient finite-element analysis of microwave and optical waveguides , 1992 .

[22]  Dirk Schulz,et al.  Novel generalized finite-difference beam propagation method , 1994 .