The small hexagon and heptagon with maximum sum of distances between vertices

The hexagon and heptagon with unit diameter and maximum sum of Euclidean distances between vertices are determined by enumerating diameter configurations, and by using a branch and cut algorithm for nonconvex quadratic programming. Lower bounds on the value on this sum are presented for polygon with a larger number of vertices.

[1]  K. Reinhardt Extremale Polygone gegebenen Durchmessers. , 1922 .

[2]  P. Erdös On Sets of Distances of n Points , 1946 .

[3]  L. Tóth,et al.  Über eine Punktverteilung auf der Kugel , 1959 .

[4]  H. Witsenhausen On the Maximum of the Sum of Squared Distances Under a Diameter Constraint , 1974 .

[5]  Ronald L. Graham,et al.  The Largest Small Hexagon , 1975, J. Comb. Theory, Ser. A.

[6]  Pierre Hansen,et al.  A branch and cut algorithm for nonconvex quadratically constrained quadratic programming , 1997, Math. Program..

[7]  Gerhard Larcher,et al.  On the Approximation of Certain Mass Distributions Appearing in Distance Geometry , 2000 .

[8]  Friedrich Pillichshammer On the sum of squared distances in the Euclidean plane , 2000 .

[9]  Pierre Hansen,et al.  The Largest Small Octagon , 2001, J. Comb. Theory, Ser. A.

[10]  Friedrich Pillichshammer,et al.  On extremal point distributions in the Euclidean plane , 2003 .

[11]  Pierre Hansen,et al.  The small octagon with longest perimeter , 2005, J. Comb. Theory, Ser. A.

[12]  Friedrich Pillichshammer,et al.  An Extremum Problem for Convex Polygons , 2007 .

[13]  Pierre Hansen,et al.  Extremal Problems for Convex Polygons - An Update , 2007 .

[14]  Jim Foster,et al.  Diameter graphs of polygons and the proof of a conjecture of Graham , 2007, J. Comb. Theory, Ser. A.

[15]  Pierre Hansen,et al.  Extremal problems for convex polygons , 2005, J. Glob. Optim..

[16]  Friedrich Pillichshammer,et al.  The Sum of Distances Between Vertices of a Convex Polygon with Unit Perimeter , 2008, Am. Math. Mon..