Resistor network approaches to electrical impedance tomography

We review a resistor network approach to the numerical solution of the inverse problem of electrical impedance tomography (EIT). The networks arise in the context of finite volume discretizations of the elliptic equation for the electric potential, on sparse and adaptively refined grids that we call optimal. The name refers to the fact that the grids give spectrally accurate approximations of the Dirichlet to Neumann map, the data in EIT. The fundamental feature of the optimal grids in inversion is that they connect the discrete inverse problem for resistor networks to the continuum EIT problem.

[1]  Juan Antonio Barceló,et al.  Stability of the Inverse Conductivity Problem in the Plane for Less Regular Conductivities , 2001 .

[2]  Liliana Borcea,et al.  Pyramidal resistor networks for electrical impedance tomography with partial boundary measurements , 2010 .

[3]  Liliana Borcea,et al.  INVERSE PROBLEMS PII: S0266-5611(02)33630-X Optimal finite difference grids for direct and inverse Sturm–Liouville problems , 2002 .

[4]  Liliana Borcea,et al.  On the continuum limit of a discrete inverse spectral problem on optimal finite difference grids , 2005 .

[5]  D. Isaacson Distinguishability of Conductivities by Electric Current Computed Tomography , 1986, IEEE Transactions on Medical Imaging.

[6]  I. Gel'fand,et al.  On the determination of a differential equation from its spectral function , 1955 .

[7]  John Sylvester,et al.  An anisotropic inverse boundary value problem , 1990 .

[8]  Vladimir Druskin,et al.  Three-point finite-difference schemes, Padé and the spectral Galerkin method. I. One-sided impedance approximation , 2001, Math. Comput..

[9]  Liliana Borcea,et al.  Electrical impedance tomography with resistor networks , 2008 .

[10]  採編典藏組 Society for Industrial and Applied Mathematics(SIAM) , 2008 .

[11]  Y. C. Verdière,et al.  Reseaux électriques planaires II , 1994 .

[12]  F. G. Vasquez On the parameterization of ill-posed inverse problems arising from elliptic partial differential equations , 2006 .

[13]  A. Mamonov Resistor network approaches to the numerical solution of electrical impedance tomography with partial boundary measurements , 2009 .

[14]  V. Druskin,et al.  Optimal grids for anisotropic problems , 2006 .

[15]  J. Pöschel,et al.  Inverse spectral theory , 1986 .

[16]  L. Borcea,et al.  Study of noise effects in electrical impedance tomography with resistor networks , 2011, 1105.1183.

[17]  L. Borcea,et al.  Uncertainty quantification for electrical impedance tomography with resistor networks , 2011 .

[18]  Alexander V. Mamonov,et al.  Resistor networks and optimal grids for the numerical solution of electrical impedance tomography with partial boundary measurements , 2010 .

[19]  L. Trefethen,et al.  Numerical linear algebra , 1997 .

[20]  David V. Ingerman,et al.  On a characterization of the kernel of the Dirichlet-to-Neumann map for a planar region , 1998 .

[21]  I. P. Natanson,et al.  Theory of Functions of a Real Variable , 1955 .

[22]  Thomas A. Manteuffel,et al.  First-Order System Least Squares and Electrical Impedance Tomography , 2004, SIAM J. Numer. Anal..

[23]  P. Lax,et al.  Theory of functions of a real variable , 1959 .

[24]  H. Ben Ameur,et al.  Regularization of parameter estimation by adaptive discretization using refinement and coarsening indicators , 2002 .

[25]  Giovanni Alessandrini,et al.  Stable determination of conductivity by boundary measurements , 1988 .

[26]  B. M. Levitan,et al.  Inverse Sturm-Liouville Problems , 1987 .

[27]  Vladimir Druskin,et al.  Application of the Difference Gaussian Rules to Solution of Hyperbolic Problems , 2000 .

[28]  E. Reich Quasiconformal mappings of the disk with given boundary values , 1976 .

[29]  Robert V. Kohn,et al.  Determining conductivity by boundary measurements , 1984 .

[30]  W. Gautschi,et al.  Lower bounds for the condition number of Vandermonde matrices , 1987 .

[31]  James A. Morrow,et al.  Circular planar graphs and resistor networks , 1998 .

[32]  V. N. Sorokin,et al.  Rational Approximations and Orthogonality , 1991 .

[33]  G. Golub,et al.  Structured inverse eigenvalue problems , 2002, Acta Numerica.

[34]  Vladimir Druskin,et al.  Gaussian Spectral Rules for the Three-Point Second Differences: I. A Two-Point Positive Definite Problem in a Semi-Infinite Domain , 1999, SIAM J. Numer. Anal..

[35]  Masahiro Yamamoto,et al.  Global uniqueness from partial Cauchy data in two dimensions , 2008, 0810.2286.

[36]  V. Marchenko Sturm-Liouville Operators and Applications , 1986 .

[37]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[38]  Vladimir Druskin,et al.  Optimal finite difference grids and rational approximations of the square root I. Elliptic problems , 2000 .

[39]  Akira Mizutani On the inverse Sturm-Liouville problem , 1984 .

[40]  David V. Ingerman,et al.  Discrete and Continuous Dirichlet-to-Neumann Maps in the Layered Case , 2000, SIAM J. Math. Anal..

[41]  T. Harutyunyan ON A UNIQUENESS THEOREM IN THE INVERSE STURM-LIOUVILLE PROBLEM , 2009 .

[42]  James A. Morrow,et al.  Finding the conductors in circular networks from boundary measurements , 1994 .

[43]  MATTI LASSAS,et al.  Calderóns' Inverse Problem for Anisotropic Conductivity in the Plane , 2004 .

[44]  Y. C. Verdière,et al.  Réseaux électriques planaires I , 1994 .

[45]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .

[46]  E. Hewitt,et al.  Theory of functions of a real variable , 1960 .

[47]  Sergio Vessella,et al.  Lipschitz stability for the inverse conductivity problem , 2005, Adv. Appl. Math..

[48]  I. S. Kats SPECTRAL FUNCTIONS OF A STRING , 1983 .

[49]  S. K. Godunov,et al.  Theory of difference schemes : an introduction , 1964 .

[50]  Khosrow Chadan,et al.  An Introduction to Inverse Scattering and Inverse Spectral Problems , 1987 .

[51]  L. Zhong On the existence of extremal Teichmüller mappings , 1982 .

[52]  Jérôme Jaffré,et al.  Refinement and coarsening indicators for adaptive parametrization: application to the estimation of hydraulic transmissivities , 2002 .

[53]  Joyce R. McLaughlin,et al.  Solution of the inverse spectral problem for an impedance with integrable derivative part II , 1993 .

[54]  R. Kohn,et al.  Determining conductivity by boundary measurements II. Interior results , 1985 .

[55]  Vladimir Druskin,et al.  Gaussian spectral rules for second order finite-difference schemes , 2000, Numerical Algorithms.

[56]  Gunther Uhlmann,et al.  Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions , 1997 .

[57]  Liliana Borcea,et al.  Electrical impedance tomography , 2002 .

[58]  K. Strebel On the existence of extremal Teichmueller mappings , 1976 .

[59]  Murthy N. Guddati,et al.  On Optimal Finite-Difference Approximation of PML , 2003, SIAM J. Numer. Anal..

[60]  V. Marchenko Sturm-Liouville Operators and Applications: Revised Edition , 2011 .

[61]  Niculae Mandache,et al.  Exponential instability in an inverse problem for the Schrodinger equation , 2001 .