Resistor network approaches to electrical impedance tomography
暂无分享,去创建一个
Liliana Borcea | Vladimir Druskin | Fernando Guevara Vasquez | Alexander V. Mamonov | V. Druskin | L. Borcea | F. G. Vasquez | A. Mamonov
[1] Juan Antonio Barceló,et al. Stability of the Inverse Conductivity Problem in the Plane for Less Regular Conductivities , 2001 .
[2] Liliana Borcea,et al. Pyramidal resistor networks for electrical impedance tomography with partial boundary measurements , 2010 .
[3] Liliana Borcea,et al. INVERSE PROBLEMS PII: S0266-5611(02)33630-X Optimal finite difference grids for direct and inverse Sturm–Liouville problems , 2002 .
[4] Liliana Borcea,et al. On the continuum limit of a discrete inverse spectral problem on optimal finite difference grids , 2005 .
[5] D. Isaacson. Distinguishability of Conductivities by Electric Current Computed Tomography , 1986, IEEE Transactions on Medical Imaging.
[6] I. Gel'fand,et al. On the determination of a differential equation from its spectral function , 1955 .
[7] John Sylvester,et al. An anisotropic inverse boundary value problem , 1990 .
[8] Vladimir Druskin,et al. Three-point finite-difference schemes, Padé and the spectral Galerkin method. I. One-sided impedance approximation , 2001, Math. Comput..
[9] Liliana Borcea,et al. Electrical impedance tomography with resistor networks , 2008 .
[10] 採編典藏組. Society for Industrial and Applied Mathematics(SIAM) , 2008 .
[11] Y. C. Verdière,et al. Reseaux électriques planaires II , 1994 .
[12] F. G. Vasquez. On the parameterization of ill-posed inverse problems arising from elliptic partial differential equations , 2006 .
[13] A. Mamonov. Resistor network approaches to the numerical solution of electrical impedance tomography with partial boundary measurements , 2009 .
[14] V. Druskin,et al. Optimal grids for anisotropic problems , 2006 .
[15] J. Pöschel,et al. Inverse spectral theory , 1986 .
[16] L. Borcea,et al. Study of noise effects in electrical impedance tomography with resistor networks , 2011, 1105.1183.
[17] L. Borcea,et al. Uncertainty quantification for electrical impedance tomography with resistor networks , 2011 .
[18] Alexander V. Mamonov,et al. Resistor networks and optimal grids for the numerical solution of electrical impedance tomography with partial boundary measurements , 2010 .
[19] L. Trefethen,et al. Numerical linear algebra , 1997 .
[20] David V. Ingerman,et al. On a characterization of the kernel of the Dirichlet-to-Neumann map for a planar region , 1998 .
[21] I. P. Natanson,et al. Theory of Functions of a Real Variable , 1955 .
[22] Thomas A. Manteuffel,et al. First-Order System Least Squares and Electrical Impedance Tomography , 2004, SIAM J. Numer. Anal..
[23] P. Lax,et al. Theory of functions of a real variable , 1959 .
[24] H. Ben Ameur,et al. Regularization of parameter estimation by adaptive discretization using refinement and coarsening indicators , 2002 .
[25] Giovanni Alessandrini,et al. Stable determination of conductivity by boundary measurements , 1988 .
[26] B. M. Levitan,et al. Inverse Sturm-Liouville Problems , 1987 .
[27] Vladimir Druskin,et al. Application of the Difference Gaussian Rules to Solution of Hyperbolic Problems , 2000 .
[28] E. Reich. Quasiconformal mappings of the disk with given boundary values , 1976 .
[29] Robert V. Kohn,et al. Determining conductivity by boundary measurements , 1984 .
[30] W. Gautschi,et al. Lower bounds for the condition number of Vandermonde matrices , 1987 .
[31] James A. Morrow,et al. Circular planar graphs and resistor networks , 1998 .
[32] V. N. Sorokin,et al. Rational Approximations and Orthogonality , 1991 .
[33] G. Golub,et al. Structured inverse eigenvalue problems , 2002, Acta Numerica.
[34] Vladimir Druskin,et al. Gaussian Spectral Rules for the Three-Point Second Differences: I. A Two-Point Positive Definite Problem in a Semi-Infinite Domain , 1999, SIAM J. Numer. Anal..
[35] Masahiro Yamamoto,et al. Global uniqueness from partial Cauchy data in two dimensions , 2008, 0810.2286.
[36] V. Marchenko. Sturm-Liouville Operators and Applications , 1986 .
[37] Barry Smith,et al. Domain Decomposition Methods for Partial Differential Equations , 1997 .
[38] Vladimir Druskin,et al. Optimal finite difference grids and rational approximations of the square root I. Elliptic problems , 2000 .
[39] Akira Mizutani. On the inverse Sturm-Liouville problem , 1984 .
[40] David V. Ingerman,et al. Discrete and Continuous Dirichlet-to-Neumann Maps in the Layered Case , 2000, SIAM J. Math. Anal..
[41] T. Harutyunyan. ON A UNIQUENESS THEOREM IN THE INVERSE STURM-LIOUVILLE PROBLEM , 2009 .
[42] James A. Morrow,et al. Finding the conductors in circular networks from boundary measurements , 1994 .
[43] MATTI LASSAS,et al. Calderóns' Inverse Problem for Anisotropic Conductivity in the Plane , 2004 .
[44] Y. C. Verdière,et al. Réseaux électriques planaires I , 1994 .
[45] A. Nachman,et al. Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .
[46] E. Hewitt,et al. Theory of functions of a real variable , 1960 .
[47] Sergio Vessella,et al. Lipschitz stability for the inverse conductivity problem , 2005, Adv. Appl. Math..
[48] I. S. Kats. SPECTRAL FUNCTIONS OF A STRING , 1983 .
[49] S. K. Godunov,et al. Theory of difference schemes : an introduction , 1964 .
[50] Khosrow Chadan,et al. An Introduction to Inverse Scattering and Inverse Spectral Problems , 1987 .
[51] L. Zhong. On the existence of extremal Teichmüller mappings , 1982 .
[52] Jérôme Jaffré,et al. Refinement and coarsening indicators for adaptive parametrization: application to the estimation of hydraulic transmissivities , 2002 .
[53] Joyce R. McLaughlin,et al. Solution of the inverse spectral problem for an impedance with integrable derivative part II , 1993 .
[54] R. Kohn,et al. Determining conductivity by boundary measurements II. Interior results , 1985 .
[55] Vladimir Druskin,et al. Gaussian spectral rules for second order finite-difference schemes , 2000, Numerical Algorithms.
[56] Gunther Uhlmann,et al. Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions , 1997 .
[57] Liliana Borcea,et al. Electrical impedance tomography , 2002 .
[58] K. Strebel. On the existence of extremal Teichmueller mappings , 1976 .
[59] Murthy N. Guddati,et al. On Optimal Finite-Difference Approximation of PML , 2003, SIAM J. Numer. Anal..
[60] V. Marchenko. Sturm-Liouville Operators and Applications: Revised Edition , 2011 .
[61] Niculae Mandache,et al. Exponential instability in an inverse problem for the Schrodinger equation , 2001 .