In situ simultaneous synthesis of WC/graphitic carbon nanocomposite as a highly efficient catalyst support for DMFC.

WC/graphitic carbon nanocomposite was in situ simultaneously obtained from anion exchange resin-WO(4)(2-)-[Fe(CN)(6)](4-) complex, which could act as a highly efficient catalyst support for the direct methanol fuel cell.

[1]  F. Liguori,et al.  Ion exchange resins: catalyst recovery and recycle. , 2009, Chemical reviews.

[2]  M. Antonietti,et al.  Synthesis of Mo and W carbide and nitride nanoparticles via a simple "urea glass" route. , 2008, Nano letters.

[3]  Lei Wang,et al.  Controllable synthesis of graphitic carbon nanostructures from ion-exchange resin-iron complex via solid-state pyrolysis process. , 2008, Chemical communications.

[4]  X. Bao,et al.  Transformation of Biomass into Porous Graphitic Carbon Nanostructures by Microwave Irradiation , 2008 .

[5]  Tao Zhang,et al.  Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. , 2008, Angewandte Chemie.

[6]  S. Cahen,et al.  Synthesis and characterization of carbon-supported nanoparticles for catalytic applications , 2008 .

[7]  Tao Zhang,et al.  One-pot synthesized MoC imbedded in ordered mesoporous carbon as a catalyst for N2H4 decomposition. , 2008, Chemical communications.

[8]  C. Mou,et al.  Well-Ordered Mesoporous Carbon Thin Film with Perpendicular Channels: Application to Direct Methanol Fuel Cell , 2008 .

[9]  S. Woo,et al.  CO tolerant Pt/WC methanol electro-oxidation catalyst , 2007 .

[10]  Shengfu Ji,et al.  Direct synthesis and structural characteristics of ordered SBA-15 mesoporous silica containing tungsten oxides and tungsten carbides , 2007 .

[11]  G. Shao,et al.  Synthesis of multi-walled carbon nanotube-tungsten carbide composites by the reduction and carbonization process , 2007 .

[12]  E. Morallón,et al.  Synthesis of Graphitic Carbon Nanostructures from Sawdust and Their Application as Electrocatalyst Supports , 2007 .

[13]  H. Itagaki,et al.  Synthesis and characterization of high-surface area tungsten carbides and application to electrocatalytic hydrogen oxidation , 2007 .

[14]  N. Keller,et al.  A new one-dimensional tungsten carbide nanostructured material , 2006 .

[15]  J. S. Lee,et al.  Tungsten carbide microspheres as a noble-metal-economic electrocatalyst for methanol oxidation. , 2005, Angewandte Chemie.

[16]  E. Wang,et al.  Controllable fabrication of carbon nanotube and nanobelt with a polyoxometalate-assisted mild hydrothermal process. , 2005, Journal of the American Chemical Society.

[17]  M. Senna,et al.  Direct synthesis of tungsten carbide nanoparticles by mechanically assisted carbothermic reduction of natural wolframite , 2005 .

[18]  Taeghwan Hyeon,et al.  High-performance direct methanol fuel cell electrodes using solid-phase-synthesized carbon nanocoils. , 2003, Angewandte Chemie.

[19]  L. Thompson,et al.  Catalytic properties of early transition metal nitrides and carbides: n-butane hydrogenolysis, dehydrogenation and isomerization , 1999 .

[20]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[21]  M. Boudart,et al.  Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis , 1973, Science.

[22]  B. Hwang,et al.  Fabrication and Characterization of Well-Dispersed and Highly Stable PtRu Nanoparticles on Carbon Mesoporous Material for Applications in Direct Methanol Fuel Cell , 2008 .

[23]  Guohua Li,et al.  Preparation and electrocatalytic property of WC/carbon nanotube composite , 2007 .

[24]  Jingguang G. Chen,et al.  Surface chemistry of transition metal carbides. , 2005, Chemical reviews.

[25]  M. Fujii,et al.  Raman identification of onion-like carbon , 1998 .