On the Density of Identifying Codes in the Square Lattice

Let G=(V, E) be an undirected graph and C a subset of vertices. If the sets Br(v)?C, v?V, are all nonempty and different, where Br(v) denotes the set of all points within distance r from v, we call C an r-identifying code. We give bounds on the best possible density of r-identifying codes in the two-dimensional square lattice.

[1]  S. Litsyn,et al.  On binary codes for identification , 2000 .

[2]  Gérard D. Cohen,et al.  On Codes Identifying Vertices in the Two-Dimensional Square Lattice with Diagonals , 2001, IEEE Trans. Computers.

[3]  Mark G. Karpovsky,et al.  On a New Class of Codes for Identifying Vertices in Graphs , 1998, IEEE Trans. Inf. Theory.

[4]  Gérard D. Cohen,et al.  New Bounds for Codes Identifying Vertices in Graphs , 1999, Electron. J. Comb..

[5]  Mark G. Karpovsky,et al.  On the Covering of Vertices for Fault Diagnosis in Hypercubes , 1999, Inf. Process. Lett..

[6]  Gérard D. Cohen,et al.  On identifying codes , 1999, Codes and Association Schemes.

[7]  Gérard D. Cohen,et al.  Bounds for Codes Identifying Vertices in the Hexagonal Grid , 2000, SIAM J. Discret. Math..

[8]  D. R. Lick,et al.  The Theory and Applications of Graphs. , 1983 .

[9]  Simon Litsyn,et al.  Bounds on identifying codes , 2001, Discret. Math..

[10]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.