A new algorithm of nonlinear conjugate gradient method with strong convergence

The nonlinear conjugate gradient method is a very useful technique for solving large scale minimization problems and has wide applications in many fields. In this paper, we present a new algorithm of nonlinear conjugate gradient method with strong convergence for unconstrained minimization problems. The new algorithm can generate an adequate trust region radius automatically at each iteration and has global convergence and linear convergence rate under some mild conditions. Numerical results show that the new algorithm is efficient in practical computation and superior to other similar methods in many situations.

[1]  Ya-Xiang Yuan,et al.  Optimization theory and methods , 2006 .

[2]  Jorge J. Moré,et al.  Benchmarking optimization software with performance profiles , 2001, Math. Program..

[3]  Ya-Xiang Yuan,et al.  Convergence Properties of Nonlinear Conjugate Gradient Methods , 1999, SIAM J. Optim..

[4]  L. Liao,et al.  R-linear convergence of the Barzilai and Borwein gradient method , 2002 .

[5]  Ya-Xiang Yuan,et al.  A Subspace Study on Conjugate Gradient Algorithms , 1995 .

[6]  E. Vercher,et al.  A Generalized Conjugate Gradient Algorithm , 1998 .

[7]  Stephen J. Wright,et al.  Conjugate Gradient Methods , 1999 .

[8]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[9]  P. Toint,et al.  Testing a class of methods for solving minimization problems with simple bounds on the variables , 1988 .

[10]  Lian Shu-jun Convergence Properties of the Conjugate Descent Method with Armijo-type Line Searches , 2005 .

[11]  C. Storey,et al.  Efficient generalized conjugate gradient algorithms, part 1: Theory , 1991 .

[12]  Boris Polyak The conjugate gradient method in extremal problems , 1969 .

[13]  R. Fletcher Practical Methods of Optimization , 1988 .

[14]  Jorge J. Moré,et al.  Testing Unconstrained Optimization Software , 1981, TOMS.

[15]  E. Polak,et al.  Note sur la convergence de méthodes de directions conjuguées , 1969 .

[16]  J. Borwein,et al.  Two-Point Step Size Gradient Methods , 1988 .

[17]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[18]  Yu-Hong Dai,et al.  Conjugate Gradient Methods with Armijo-type Line Searches , 2002 .

[19]  Ya-Xiang Yuan,et al.  A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property , 1999, SIAM J. Optim..