Molecular Quantity Variations in Human-Mandibular-Bone Osteoid

[1]  G. de With,et al.  In Vitro Mineralization of Collagen , 2021, Advanced materials.

[2]  A. Martínez Cortizas,et al.  Linking structural and compositional changes in archaeological human bone collagen: an FTIR-ATR approach , 2020, Scientific Reports.

[3]  M. Mildner,et al.  Re-epithelialization and immune cell behaviour in an ex vivo human skin model , 2020, Scientific Reports.

[4]  Yan Wang,et al.  Bone mineral: new insights into its chemical composition , 2019, Scientific Reports.

[5]  M. Keinänen,et al.  Narrowband-autofluorescence imaging for bone analysis. , 2019, Biomedical optics express.

[6]  A. Boskey,et al.  Dynamic structure and composition of bone investigated by nanoscale infrared spectroscopy , 2018, PloS one.

[7]  M. Padalkar,et al.  Validated Approaches for Quantification of Bone Mineral Crystallinity Using Transmission Fourier Transform Infrared (FT-IR), Attenuated Total Reflection (ATR) FT-IR, and Raman Spectroscopy , 2018, Applied spectroscopy.

[8]  Yang Yang,et al.  Structure analysis of collagen fibril at atomic-level resolution and its implications for intra-fibrillar transport in bone biomineralization. , 2018, Physical chemistry chemical physics : PCCP.

[9]  B. Pavan,et al.  Carbonate substitution in the mineral component of bone: Discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite. , 2017, Journal of solid state chemistry.

[10]  M. G. Bridelli,et al.  Fourier transform infrared conformational investigation of type I collagen aged by in vitro induced dehydration and non-enzymatic glycation treatments , 2017 .

[11]  A. Bayés‐Genís,et al.  Conformational and thermal characterization of left ventricle remodeling post-myocardial infarction. , 2017, Biochimica et biophysica acta. Molecular basis of disease.

[12]  Jay Gopalakrishnan,et al.  Mathematical model for bone mineralization , 2015, Front. Cell Dev. Biol..

[13]  P. Cerri,et al.  Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells , 2015, BioMed research international.

[14]  E. Paschalis,et al.  Fourier Transform Infrared Spectroscopic Characterization of Mineralizing Type I Collagen Enzymatic Trivalent Cross-Links , 2014, Calcified Tissue International.

[15]  T. Matsuura,et al.  Distinct Characteristics of Mandibular Bone Collagen Relative to Long Bone Collagen: Relevance to Clinical Dentistry , 2014, BioMed research international.

[16]  A. Boskey,et al.  Bone composition: relationship to bone fragility and antiosteoporotic drug effects. , 2013, BoneKEy reports.

[17]  Y. Bala,et al.  Bone mineralization: from tissue to crystal in normal and pathological contexts , 2013, Osteoporosis International.

[18]  G. A. Soares,et al.  Simultaneous incorporation of magnesium and carbonate in apatite: effect on physico-chemical properties , 2013 .

[19]  A. Boskey,et al.  Fourier Transform Infrared Spectroscopic Imaging Parameters Describing Acid Phosphate Substitution in Biologic Hydroxyapatite , 2013, Calcified Tissue International.

[20]  G. Bedogni,et al.  Osteomalacia: the missing link in the pathogenesis of bisphosphonate-related osteonecrosis of the jaws? , 2012, The oncologist.

[21]  E. Golub Biomineralization and matrix vesicles in biology and pathology , 2011, Seminars in Immunopathology.

[22]  S. Weiner,et al.  Crystallization Pathways in Bone , 2011, Cells Tissues Organs.

[23]  J. Jurvelin,et al.  Infrared spectroscopy indicates altered bone turnover and remodeling activity in renal osteodystrophy , 2010, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[24]  D. Farlay,et al.  Mineral maturity and crystallinity index are distinct characteristics of bone mineral , 2010, Journal of Bone and Mineral Metabolism.

[25]  G. Gouspillou,et al.  Collagen types analysis and differentiation by FTIR spectroscopy , 2009, Analytical and bioanalytical chemistry.

[26]  A. Boskey,et al.  Spatial Variation in Osteonal Bone Properties Relative to Tissue and Animal Age , 2009, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[27]  Xu Feng,et al.  Chemical and Biochemical Basis of Cell-Bone Matrix Interaction in Health and Disease. , 2009, Current chemical biology.

[28]  J. Kong,et al.  Fourier transform infrared spectroscopic analysis of protein secondary structures. , 2007, Acta biochimica et biophysica Sinica.

[29]  R. Mendelsohn,et al.  FTIR studies of collagen model peptides: complementary experimental and simulation approaches to conformation and unfolding. , 2007, Journal of the American Chemical Society.

[30]  A. Boskey,et al.  FT-IR imaging of native and tissue-engineered bone and cartilage. , 2007, Biomaterials.

[31]  S. Ott,et al.  Mineral Changes in Osteoporosis: A Review , 2006, Clinical orthopaedics and related research.

[32]  Richard Mendelsohn,et al.  Infrared spectroscopic characterization of mineralized tissues. , 2005, Vibrational Spectroscopy.

[33]  Himadri S. Gupta,et al.  Structure and mechanical quality of the collagen–mineral nano-composite in bone , 2004 .

[34]  Tamer F. Rabie,et al.  Adaptive hybrid mean and median filtering of high-ISO long-exposure sensor noise for digital photography , 2004, J. Electronic Imaging.

[35]  R Mendelsohn,et al.  Spectroscopic Characterization of Collagen Cross‐Links in Bone , 2001, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[36]  A. Stoch,et al.  FTIR monitoring of the growth of the carbonate containing apatite layers from simulated and natural body fluids , 1999 .

[37]  A. Boskey,et al.  FTIR Microspectroscopic Analysis of Normal Human Cortical and Trabecular Bone , 1997, Calcified Tissue International.

[38]  A. Boskey,et al.  FTIR microspectroscopic analysis of human osteonal bone , 1996, Calcified Tissue International.

[39]  R Mendelsohn,et al.  Novel infrared spectroscopic method for the determination of crystallinity of hydroxyapatite minerals. , 1991, Biophysical journal.

[40]  C. Rey,et al.  Characterization of Calcium Phosphates Using Vibrational Spectroscopies , 2014 .

[41]  K. Cai,et al.  Comparison of Crystal Structure Between Carbonated Hydroxyapatite and Natural Bone Apatite with Theoretical Calculation , 2013 .

[42]  H. Aor.nn,et al.  INFRARED SPECTRA OF PHOSPHATE MINERALS: SYMMETRY AND SUBSTITUTIONAL EFFECTS IN THE PYROMORPHITE SERIES , 2007 .

[43]  Christian Rey,et al.  Resolution-enhanced fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: Investigations in thev4 PO4 domain , 2007, Calcified Tissue International.

[44]  A. Boskey,et al.  Fourier transform infrared spectroscopy of the solution-mediated conversion of amorphous calcium phosphate to hydroxyapatite: New correlations between X-ray diffraction and infrared data , 2006, Calcified Tissue International.

[45]  P. Delmas,et al.  The role of collagen in bone strength , 2005, Osteoporosis International.