그래프 컷을 이용한 강인한 인체 실루엣 추출

본 논문에서는 실내 환경에서 동적 스테레오 카메라(active stereo camera)를 이용한 새로운 인체 실루엣 추출 방법을 제안한다. 제안한 알고리즘의 주된 응용분야는 이동 로봇 플랫폼에서의 인체 실루엣을 이용한 제스처 인식이다. 먼 거리에서 움직이는 객체를 분할(segmentation)하는 데에는 저해상도, 그림자, 스테레오 정합의 불확실성, 배경과 객체의 색 분포의 불안정성 등과 같은 다양한 문제를 내포한다. 우리는 먼저 이미지 분할 기법과 스테레오 정보를 이용하여 신뢰도 높은 객체와 배경 영역을 추정하였다. 이렇게 추정된 영역을 적절히 그래프 컷(graph cut)에 활용하는 방식을 고안함으로써 주변 환경의 변화에 강인한 인체 실루엣 추출을 가능하게 하였다. 제안한 방식은 실내에서 펜-틸트(pan-tilt) 스테레오 카메라로 획득된 비디오 데이타를 대상으로 실험하였으며, 색, 색과 스테레오, 색과 대비 정보를 기반으로 한 방법들과 비교 실험한 결과 정확도가 많이 향상된 것을 확인할 수 있었다.