Bayesian nonparametric location–scale–shape mixtures

Discrete mixture models are one of the most successful approaches for density estimation. Under a Bayesian nonparametric framework, Dirichlet process location–scale mixture of Gaussian kernels is the golden standard, both having nice theoretical properties and computational tractability. In this paper we explore the use of the skew-normal kernel, which can naturally accommodate several degrees of skewness by the use of a third parameter. The choice of this kernel function allows us to formulate nonparametric location–scale–shape mixture prior with desirable theoretical properties and good performance in different applications. Efficient Gibbs sampling algorithms are also discussed and the performance of the methods are tested through simulations and applications to galaxy velocity and fertility data. Extensions to accommodate discrete data are also discussed.

[1]  A. Kostaki,et al.  Modeling fertility in modern populations , 2007 .

[2]  Informative Bayesian inference for skew-normal distribution , 2013, 1305.3080.

[3]  D. Freedman,et al.  On the histogram as a density estimator:L2 theory , 1981 .

[4]  A. Azzalini A class of distributions which includes the normal ones , 1985 .

[5]  J. Ghosh,et al.  POSTERIOR CONSISTENCY OF DIRICHLET MIXTURES IN DENSITY ESTIMATION , 1999 .

[6]  K. Roeder Density estimation with confidence sets exemplified by superclusters and voids in the galaxies , 1990 .

[7]  Stephen G. Walker,et al.  Univariate Bayesian nonparametric mixture modeling with unimodal kernels , 2014, Stat. Comput..

[8]  Michael,et al.  On a Class of Bayesian Nonparametric Estimates : I . Density Estimates , 2008 .

[9]  Tsung-I Lin,et al.  Finite mixture modelling using the skew normal distribution , 2007 .

[10]  David B. Dunson,et al.  Posterior consistency in conditional distribution estimation , 2013, J. Multivar. Anal..

[11]  Stephen G. Walker,et al.  Slice sampling mixture models , 2011, Stat. Comput..

[12]  Reinaldo Boris Arellano-Valle,et al.  Shape mixtures of multivariate skew-normal distributions , 2009, J. Multivar. Anal..

[13]  A. V. D. Vaart,et al.  Entropies and rates of convergence for maximum likelihood and Bayes estimation for mixtures of normal densities , 2001 .

[14]  S. Frühwirth-Schnatter,et al.  Bayesian inference for finite mixtures of univariate and multivariate skew-normal and skew-t distributions. , 2010, Biostatistics.

[15]  H. Kohler,et al.  A comment on "Recent European fertility patterns: Fitting curves to distorted distributions" by T. Chandola, D. A. Coleman and R. W. Hiorns , 2000, Population studies.

[16]  R. McCulloch Local Model Influence , 1989 .

[17]  L. Wasserman,et al.  The consistency of posterior distributions in nonparametric problems , 1999 .

[18]  R. Arellano-Valle,et al.  On the Unification of Families of Skew‐normal Distributions , 2006 .

[19]  A. V. D. Vaart,et al.  Convergence rates of posterior distributions , 2000 .

[20]  B. Liseo,et al.  A note on reference priors for the scalar skew-normal distribution , 2006 .

[21]  David B. Dunson,et al.  Repulsive Mixtures , 2012, NIPS.

[22]  S. Ghosal,et al.  Adaptive Bayesian multivariate density estimation with Dirichlet mixtures , 2011, 1109.6406.

[23]  B. Liseo La classe delle densità normali sghembe: aspetti inferenziali da un punto di vista Bayesiano , 1990 .

[24]  Grace L. Yang,et al.  On Bayes Procedures , 1990 .

[25]  S. Walker,et al.  On rates of convergence for posterior distributions in infinite-dimensional models , 2007, 0708.1892.

[26]  L. Ventura,et al.  A Matching Prior for the Shape Parameter of the Skew‐Normal Distribution , 2012 .

[27]  Ramsés H. Mena,et al.  Hierarchical Mixture Modeling With Normalized Inverse-Gaussian Priors , 2005 .

[28]  T Chandola,et al.  Recent European fertility patterns: fitting curves to 'distorted' distributions. , 1999, Population studies.

[29]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[30]  B. Efron,et al.  Limiting the Risk of Bayes and Empirical Bayes Estimators—Part II: The Empirical Bayes Case , 1972 .

[31]  Carl P. Schmertmann,et al.  A system of model fertility schedules with graphically intuitive parameters. , 2003 .

[32]  T. Ferguson Prior Distributions on Spaces of Probability Measures , 1974 .

[33]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[34]  Antonio Canale,et al.  Bayesian Kernel Mixtures for Counts , 2011, Journal of the American Statistical Association.

[35]  T. Minka,et al.  A useful distribution for fitting discrete data: revival of the Conway–Maxwell–Poisson distribution , 2005 .

[36]  R. Loschi,et al.  Nonparametric Mixtures Based on Skew-normal Distributions: An Application to Density Estimation , 2015 .

[37]  Adrian E. Raftery,et al.  Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .

[38]  J. Pitman,et al.  Size-biased sampling of Poisson point processes and excursions , 1992 .

[39]  Lancelot F. James,et al.  Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .

[40]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[41]  J. Pitman,et al.  Exchangeable Gibbs partitions and Stirling triangles , 2004, math/0412494.

[42]  S. Ghosal,et al.  Kullback Leibler property of kernel mixture priors in Bayesian density estimation , 2007, 0710.2746.

[43]  A. V. D. Vaart,et al.  Posterior convergence rates of Dirichlet mixtures at smooth densities , 2007, 0708.1885.

[44]  N. Pillai,et al.  Bayesian density regression , 2007 .