Estimation of near-surface quality factors by constrained inversion of Rayleigh-wave attenuation coefficients

[1]  Yinhe Luo,et al.  Advantages of Using Multichannel Analysis of Love Waves (MALW) to Estimate Near-Surface Shear-Wave Velocity , 2012, Surveys in Geophysics.

[2]  A. Morelli Inverse Problem Theory , 2010 .

[3]  A Trade-Off Solution between Model Resolution and Covariance in Surface-Wave Inversion , 2010 .

[4]  Gene H. Golub,et al.  Singular value decomposition and least squares solutions , 1970, Milestones in Matrix Computation.

[5]  Richard D. Miller,et al.  Joint analysis of refractions with surface waves: An inverse solution to the refraction-traveltime problem , 2006 .

[6]  Jianghai Xia,et al.  Estimation of Elastic Moduli in a Compressible Gibson Half-space by Inverting Rayleigh-wave Phase Velocity , 2006 .

[7]  Galen,et al.  Definitions and terminology , 2006 .

[8]  Jianghai Xia,et al.  Inversion of high frequency surface waves with fundamental and higher modes , 2003 .

[9]  Jianghai Xia,et al.  Determining Q of near-surface materials from Rayleigh waves , 2002 .

[10]  Carlo G. Lai,et al.  IN SITU MEASUREMENT OF DAMPING RATIO USING SURFACE WAVES , 2000 .

[11]  D. Oldenburg,et al.  Incorporating geological dip information into geophysical inversions , 2000 .

[12]  An improved method of determining near-surface Q , 1999 .

[13]  Jianghai Xia,et al.  Estimation of near‐surface shear‐wave velocity by inversion of Rayleigh waves , 1999 .

[14]  3-D Inversion of DC Resistivity Data Using an L-curve Criterion , 1999 .

[15]  Carlo G. Lai,et al.  Simultaneous Inversion of Rayleigh Phase Velocity and Attenuation for Near-Surface Site Characterization , 1998 .

[16]  M. Nafi Toksöz,et al.  Nonlinear refraction traveltime tomography , 1998 .

[17]  S. Kramer Geotechnical Earthquake Engineering , 1996 .

[18]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[19]  R. Parker Geophysical Inverse Theory , 1994 .

[20]  Douglas W. Oldenburg,et al.  3-D inversion of magnetic data , 1996 .

[21]  Per Christian Hansen,et al.  Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..

[22]  Richard D. Miller,et al.  Seismic Reflection Methods Applied To Engineering, Environmental, And Ground-Water Problems , 1988 .

[23]  P. Hansen Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .

[24]  Susan E. Pullan,et al.  Shallow seismic reflection mapping of the overburden-bedrock interface with the engineering seismograph; some simple techniques , 1984 .

[25]  R. E. Sheriff,et al.  Exploration Seismology, Volume 1: History, Theory and Data Acquisition , 1982 .

[26]  D. Palmer The generalized reciprocal method of seismic refraction interpretation , 1985 .

[27]  M. N. Toksoz,et al.  Attenuation of seismic waves in dry and saturated rocks: II. Mechanisms , 1979 .

[28]  B. Mitchell Regional Rayleigh wave attenuation in North America , 1975 .

[29]  D. L. Anderson,et al.  Attenuation of seismic energy in the upper mantle , 1965 .

[30]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[31]  C. Lanczos,et al.  Linear Differential Operators , 1963 .

[32]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .