An Investigation of Markov Random Fields for Bayesian Reconstruction of Single Photon Emission Computed Tomography

This research investigates the use of Markov random fields for Bayesian reconstruction algorithms to be used with high-resolution and high-sensitivity SPECT systems for small animal imaging. It extends previous research on mechanical models for Bayesian image reconstruction by using a three-dimensional nonconforming finite element model and linear elasticity concepts to derive minimum potential energy functionals which regularize the reconstruction process. It combines dual collimator SPECT projection data by using high-resolution data to penalize lower-resolution data. It compares the new three-dimensional penalized reconstruction technique with existing penalized techniques through the use of modulation transfer and contrast discrimination functions.

[1]  Anand Rangarajan,et al.  Bayesian reconstruction of functional images using anatomical information as priors , 1993, IEEE Trans. Medical Imaging.

[2]  D. M. Titterington,et al.  A Study of Methods of Choosing the Smoothing Parameter in Image Restoration by Regularization , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Permalink Feasible Images and Practical Stopping Rules for Iterative Algorithms in Emission Tomography , 2013 .

[4]  Donald W. Wilson,et al.  FastSPECT II: a second-generation high-resolution dynamic SPECT imager , 2002, IEEE Transactions on Nuclear Science.

[5]  S. R. Simanca,et al.  On Circulant Matrices , 2012 .

[6]  H. Atkins,et al.  Pinhole SPECT: an approach to in vivo high resolution SPECT imaging in small laboratory animals. , 1994, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[7]  Hakan Erdogan,et al.  Monotonic algorithms for transmission tomography , 2002, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..

[8]  Anna Tonazzini,et al.  Sigmoidal approximations for self-interacting line processes in edge-preserving image restoration , 1995, Pattern Recognit. Lett..

[9]  J. Meinguet Multivariate interpolation at arbitrary points made simple , 1979 .

[10]  Alvaro R. De Pierro,et al.  A row-action alternative to the EM algorithm for maximizing likelihood in emission tomography , 1996, IEEE Trans. Medical Imaging.

[11]  Donald Geman,et al.  Constrained Restoration and the Recovery of Discontinuities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  P. Green Bayesian reconstructions from emission tomography data using a modified EM algorithm. , 1990, IEEE transactions on medical imaging.

[13]  L. Shepp,et al.  Maximum Likelihood Reconstruction for Emission Tomography , 1983, IEEE Transactions on Medical Imaging.

[14]  Franck Luthon,et al.  Nonlinear color space and spatiotemporal MRF for hierarchical segmentation of face features in video , 2004, IEEE Transactions on Image Processing.

[15]  Eric C. Frey,et al.  Pinhole SPECT of mice using the LumaGEM gamma camera , 2001 .

[16]  Richard E. Carson,et al.  Precision and accuracy of regional radioactivity quantitation using the maximum likelihood EM reconstruction algorithm , 1994, IEEE Trans. Medical Imaging.

[17]  Ariela Sofer,et al.  Interior-point methodology for 3-D PET reconstruction , 2000, IEEE Transactions on Medical Imaging.

[18]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[19]  K. Lange,et al.  EM reconstruction algorithms for emission and transmission tomography. , 1984, Journal of computer assisted tomography.

[20]  Demetri Terzopoulos,et al.  Multilevel computational processes for visual surface reconstruction , 1983, Comput. Vis. Graph. Image Process..

[21]  Per Christian Hansen,et al.  Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..

[22]  Stochastic Relaxation , 2014, Computer Vision, A Reference Guide.

[23]  K. Lange Convergence of EM image reconstruction algorithms with Gibbs smoothing. , 1990, IEEE transactions on medical imaging.

[24]  Y. Yonekura,et al.  Ultra-high resolution SPECT system using four pinhole collimators for small animal studies. , 1995, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[25]  Nanning Zheng,et al.  Stereo Matching Using Belief Propagation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Jean Duchon,et al.  Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces , 1976 .

[27]  Charles L. Byrne,et al.  Applied Iterative Methods , 2007 .

[28]  Gene Gindi,et al.  Validation of new Gibbs priors for Bayesian tomographic reconstruction using numerical studies and physically acquired data , 1999 .

[29]  Paul Kinahan,et al.  Analytic 3D image reconstruction using all detected events , 1989 .

[30]  Alfred O. Hero,et al.  Space-alternating generalized expectation-maximization algorithm , 1994, IEEE Trans. Signal Process..

[31]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[32]  Raman Paranjape,et al.  Fundamental enhancement techniques , 2000 .

[33]  Dianne P. O'Leary,et al.  The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems , 1993, SIAM J. Sci. Comput..

[34]  T. Benson,et al.  Approximate volumetric system models for microSPECT , 2004, IEEE Symposium Conference Record Nuclear Science 2004..

[35]  J.S. Wall,et al.  3D segmentation of the mouse spleen in microCT via active contours , 2005, IEEE Nuclear Science Symposium Conference Record, 2005.

[36]  Patrick Bouthemy,et al.  Multimodal Estimation of Discontinuous Optical Flow using Markov Random Fields , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Haluk Derin,et al.  Modeling and Segmentation of Noisy and Textured Images Using Gibbs Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Yuchen Yan,et al.  A system for the 3D reconstruction of retracted-septa PET data using the EM algorithm , 1994, Proceedings of 1994 IEEE Nuclear Science Symposium - NSS'94.

[39]  Andrew W. Fitzgibbon,et al.  Global stereo reconstruction under second order smoothness priors , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[40]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .

[41]  Zhenyu Zhou,et al.  Approximate maximum likelihood hyperparameter estimation for Gibbs priors , 1995, Proceedings., International Conference on Image Processing.

[42]  M. Bierlaire,et al.  On iterative algorithms for linear least squares problems with bound constraints , 1991 .

[43]  C Lartizien,et al.  GATE: a simulation toolkit for PET and SPECT. , 2004, Physics in medicine and biology.

[44]  H. Malcolm Hudson,et al.  Accelerated image reconstruction using ordered subsets of projection data , 1994, IEEE Trans. Medical Imaging.

[45]  P. Lascaux,et al.  Some nonconforming finite elements for the plate bending problem , 1975 .

[46]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[47]  Federico Girosi,et al.  Parallel and Deterministic Algorithms from MRFs: Surface Reconstruction , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  Karl Rohr,et al.  Landmark-Based Image Analysis , 2001, Computational Imaging and Vision.

[49]  Stan Z. Li Markov Random Field Modeling in Image Analysis , 2009, Advances in Pattern Recognition.

[50]  David G. Luenberger,et al.  Linear and Nonlinear Programming: Second Edition , 2003 .

[51]  Tinsu Pan,et al.  Preconditioning methods for improved convergence rates in iterative reconstructions , 1993, IEEE Trans. Medical Imaging.

[52]  Anand Rangarajan,et al.  Bayesian image reconstruction in SPECT using higher order mechanical models as priors , 1995, IEEE Trans. Medical Imaging.

[53]  S. Cherry,et al.  Physics in Nuclear Medicine , 2004 .

[54]  David Marr,et al.  From Images to Surfaces , 2010 .

[55]  Yvan G. Leclerc,et al.  Constructing simple stable descriptions for image partitioning , 1989, International Journal of Computer Vision.

[56]  Linda Kaufman,et al.  Implementing and Accelerating the EM Algorithm for Positron Emission Tomography , 1987, IEEE Transactions on Medical Imaging.

[57]  J. J. Moré,et al.  Algorithms for bound constrained quadratic programming problems , 1989 .

[58]  Alvaro R. De Pierro,et al.  A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography , 1995, IEEE Trans. Medical Imaging.

[59]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[60]  Maxim A. Olshanskii,et al.  A Finite Element Method for Elliptic Equations on Surfaces , 2009, SIAM J. Numer. Anal..

[61]  T. Budinger,et al.  Three-dimensional reconstruction in nuclear medicine emission imaging , 1974 .

[62]  Horst Halling,et al.  Compact high resolution detector for small animal SPECT , 1999, 1999 IEEE Nuclear Science Symposium. Conference Record. 1999 Nuclear Science Symposium and Medical Imaging Conference (Cat. No.99CH37019).

[63]  Olga Veksler,et al.  Graph Cuts in Vision and Graphics: Theories and Applications , 2006, Handbook of Mathematical Models in Computer Vision.

[64]  Richard Szeliski,et al.  A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[65]  Stuart Geman,et al.  Statistical methods for tomographic image reconstruction , 1987 .

[66]  C. Davatzikos,et al.  Using a deformable surface model to obtain a shape representation of the cortex , 1995, Proceedings of International Symposium on Computer Vision - ISCV.

[67]  Jeffrey A. Fessler Penalized weighted least-squares image reconstruction for positron emission tomography , 1994, IEEE Trans. Medical Imaging.

[68]  Anand Rangarajan,et al.  Bayesian Reconstruction for Emissiom Tomography via Deterministic Annealing , 1993, IPMI.

[69]  P H Murphy,et al.  Radionuclide emission computed tomography of the head with 99mCc and a scintillation camera. , 1977, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[70]  T. Hebert,et al.  A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors. , 1989, IEEE transactions on medical imaging.

[71]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[72]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[73]  Jeffrey A. Fessler,et al.  Grouped-coordinate ascent algorithms for penalized-likelihood transmission image reconstruction , 1997, IEEE Transactions on Medical Imaging.

[74]  W. Eric L. Grimson,et al.  From images to surfaces , 1981 .

[75]  Shikui Yan,et al.  A New Highly Versatile Multimodality Small Animal Imaging Platform , 2006, 2006 IEEE Nuclear Science Symposium Conference Record.

[76]  Simon R. Cherry,et al.  Fast gradient-based methods for Bayesian reconstruction of transmission and emission PET images , 1994, IEEE Trans. Medical Imaging.

[77]  Richard M. Leahy,et al.  Incorporation of Anatomical MR Data for Improved Dunctional Imaging with PET , 1991, IPMI.

[78]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[79]  E U Mumcuoğlu,et al.  Bayesian reconstruction of PET images: methodology and performance analysis. , 1996, Physics in medicine and biology.

[80]  A. Yuille,et al.  Energy functions for early vision and analog networks , 1989, Biological Cybernetics.

[81]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[82]  Garry Chinn,et al.  A general class of preconditioners for statistical iterative reconstruction of emission computed tomography , 1997, IEEE Transactions on Medical Imaging.

[83]  Demetri Terzopoulos,et al.  Deformable models in medical image analysis: a survey , 1996, Medical Image Anal..

[84]  Anand Rangarajan,et al.  A continuation method for emission tomography , 1992 .

[85]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[86]  H. Derin,et al.  Segmentation of textured images using Gibbs random fields , 1986 .

[87]  Jeffrey A. Fessler,et al.  Conjugate-gradient preconditioning methods for shift-variant PET image reconstruction , 1999, IEEE Trans. Image Process..

[88]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[89]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[90]  Eric Dubois,et al.  Bayesian Estimation of Motion Vector Fields , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[91]  Michael J. Black,et al.  On the unification of line processes , 1996 .

[92]  Gene H. Golub,et al.  Matrix computations , 1983 .

[93]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.