Prediction in Projection: Computer Performance Forecasting, a Dynamical Systems Approach

[1]  Fraser,et al.  Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.

[2]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[3]  George Sugihara,et al.  Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series , 1990, Nature.

[4]  E Bradley,et al.  Topology-based signal separation. , 2004, Chaos.

[5]  J. Theiler,et al.  Don't bleach chaotic data. , 1993, Chaos.

[6]  Amer Diwan,et al.  Supporting experiments in computer systems research , 2010 .

[7]  J. Doyne Farmer,et al.  Exploiting Chaos to Predict the Future and Reduce Noise , 1989 .

[8]  George Ho,et al.  PAPI: A Portable Interface to Hardware Performance Counters , 1999 .

[9]  E. Lorenz Atmospheric Predictability as Revealed by Naturally Occurring Analogues , 1969 .

[10]  F. Takens Detecting strange attractors in turbulence , 1981 .

[11]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[12]  Amer Diwan,et al.  Computer systems are dynamical systems. , 2009, Chaos.

[13]  A. Katok,et al.  Introduction to the Modern Theory of Dynamical Systems: INTRODUCTION , 1995 .

[14]  Holger Kantz,et al.  Practical implementation of nonlinear time series methods: The TISEAN package. , 1998, Chaos.

[15]  H. Abarbanel,et al.  Determining embedding dimension for phase-space reconstruction using a geometrical construction. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[16]  James D. Meiss,et al.  Differential dynamical systems , 2007, Mathematical modeling and computation.