Neural network approach for the calculation of potential coefficients in quantum mechanics
暂无分享,去创建一个
Patricio Cumsille | Carlos M. Reyes | Sebastián Ossandón | Camilo Reyes | S. Ossandón | Camilo Reyes | P. Cumsille | C. M. Reyes
[1] Sebastián Ossandón,et al. On the neural network calculation of the Lamé coefficients through eigenvalues of the elasticity operator , 2016 .
[2] B. M. Fulk. MATH , 1992 .
[3] Y. Shirvany,et al. Numerical solution of the nonlinear Schrodinger equation by feedforward neural networks , 2008 .
[4] M. Fortin,et al. Mixed Finite Element Methods and Applications , 2013 .
[5] Dimitris G. Papageorgiou,et al. An Efficient Chebyshev-Lanczos Method for Obtaining Eigensolutions of the Schrödinger Equation on a Grid , 1996 .
[6] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[7] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[8] James J. Carroll,et al. Approximation of nonlinear systems with radial basis function neural networks , 2001, IEEE Trans. Neural Networks.
[9] D. Fotiadis,et al. Artificial neural network methods in quantum mechanics , 1997, quant-ph/9705029.
[10] Andrew G. Glen,et al. APPL , 2001 .
[11] Tom E. Simos,et al. A finite-difference method for the numerical solution of the Schro¨dinger equation , 1997 .
[12] Daniele Boffi,et al. Finite element approximation of eigenvalue problems , 2010, Acta Numerica.
[13] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[14] Carlos M. Reyes,et al. Neural network solution for an inverse problem associated with the Dirichlet eigenvalues of the anisotropic Laplace operator , 2016, Comput. Math. Appl..
[15] Arif Masud,et al. Stabilized Finite Element Methods for the Schrdinger Wave Equation , 2009 .
[16] B. Mercier,et al. Eigenvalue approximation by mixed and hybrid methods , 1981 .
[17] Thad G. Walker,et al. Matrix Numerov method for solving Schrödinger's equation , 2012 .
[18] H. Ishikawa,et al. An accurate method for numerical calculations in quantum mechanics , 2002 .
[19] Tomaso A. Poggio,et al. A Sparse Representation for Function Approximation , 1998, Neural Computation.